Skip to main content
Log in

Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Microtubule dynamics are essential for plant cell development and in producing responses to external stimuli. However, little is known about the regulation of microtubule dynamics or crosstalk between microtubule and stomatal movement. Here we identified microtubule reorganization as a crucial factor determining guard cell responses to dark and abscisic acid (ABA) signaling. As stomata opened, guard cells exhibited radially arranged cortical microtubules, which depolymerized into the cytosol when exposed to darkness and ABA. Suppression of microtubule disassembly by paclitaxel, a microtubule-stabilizing drug, significantly enhanced stomatal aperture under light, and partially blocked ABA- or darkness-induced stomatal closure. However, treatment with only the anti-microtubule drug, oryzalin, did not affect stomatal movement with or without external stimuli. Phosphatidic acid (PA) bound to a clade A type 2C protein phosphatase (PP2C), PP2CA, and deletion of PP2CA partially inhibited PA-induced microtubule depolymerization and stomatal closure. Moreover, microtubule reorganization was altered in the ABA-insensitive mutant pldα1, but not in the ABA-hypersensitive mutant pp2ca. We propose that a faithfully balanced reorganization of microtubules fulfills fundamental functions to enable the fast change of stomata in plant adaptive responses to developmental and environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    Article  CAS  PubMed  Google Scholar 

  • Andreeva Z, Ho AY, Barthet MM, Potocký M, Bezvoda R, Žárský V, Marc J (2009) Phospholipase D family interactions with the cytoskeleton: isoform δ promotes plasma membrane anchoring of cortical microtubules. Funct Plant Biol 36:600–612

    Article  CAS  Google Scholar 

  • Assmann SM, Baskin TI (1998) The function of guard cells does not require an intact array of cortical microtubules. J Exp Bot 49:163–170

    Article  CAS  Google Scholar 

  • Bhaskara GB, Wen T-N, Nguyen TT, Verslues PE (2017) Protein phosphatase 2cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell 29:169–191

    Article  CAS  PubMed  Google Scholar 

  • Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang PG, Poretsky E, Belknap TF, Waadt R, Aleman F (2015) Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. Elife 4:e03599

    PubMed Central  Google Scholar 

  • Castillo M-C, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J (2015) Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 8:392

    Article  Google Scholar 

  • Chen C, Xiao Y-G, Li X, Ni M (2012) Light-regulated stomatal aperture in Arabidopsis. Mol Plant 5:566–572

    Article  PubMed  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    Article  CAS  PubMed  Google Scholar 

  • DeLong A (2006) Switching the flip: protein phosphatase roles in signaling pathways. Curr Opin Plant Biol 9:470–477

    Article  CAS  PubMed  Google Scholar 

  • Distefano AM, Scuffi D, Garcia-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907

    Article  CAS  PubMed  Google Scholar 

  • Eisinger W, Ehrhardt D, Briggs W (2012) Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Mol Plant 5:601–610

    Article  PubMed  Google Scholar 

  • Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A, Froehlich A, Funke N, Persson S (2015) A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Pytela J, Hotta T, Kato T, Hamada T, Akamatsu R, Ishida Y, Kutsuna N, Hasezawa S, Nomura Y (2013) An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr Biol 23:1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Hasezawa S, Asai N, Nakajima N, Kondo N (1998) Dynamic organization of microtubules in guard cells of Vicia faba L. with diurnal cycle. Plant Cell Physiol 39:80–86

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Hasezawa S, Nakajima N, Kondo N (2000) Changes in tubulin protein expression in guard cells of Vicia faba L. accompanied with dynamic organization of microtubules during the diurnal cycle. Plant Cell Physiol 41:600

    Article  CAS  PubMed  Google Scholar 

  • Gray J (2005) Guard cells: transcription factors regulate stomatal movements. Curr Biol 15:R593–R595

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

    Article  CAS  PubMed  Google Scholar 

  • Ho AY, Day DA, Brown MH, Marc J (2009) Arabidopsis phospholipase Dδ as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. Funct Plant Biol 36:190–198

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CJ, Nakajima N, Kondo N (1996) Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. Plant Cell Physiol 37:697–701

    Article  CAS  Google Scholar 

  • Jiang K, Sorefan K, Deeks MJ, Bevan MW, Hussey PJ, Hetherington AM (2012) The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24:2031–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q (2014) Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239:565–575

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Hepler PK, Eun SO, Ha KS, Lee Y (1995) Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. Plant Physiol 109:1077–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollist H, Nuhkat M, Roelfsema MRG (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62

    Article  CAS  PubMed  Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. Plant Cell Physiol 43:911–922

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahav M, Abu-Abied M, Belausov E, Schwartz A, Sadot E (2004) Microtubules of guard cells are light sensitive. Plant Cell Physiol 45:573–582

    Article  CAS  PubMed  Google Scholar 

  • Laohavisit A, Brown AT, Cicuta P, Davies JM (2010) Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiol 152:1824–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T, Simkin AJ, Kelly G, Granot D (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol 203:1064–1081

    Article  CAS  PubMed  Google Scholar 

  • Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Qu Y, Zhang Q (2014) Phospholipids: molecules regulating cytoskeletal organization in plant abiotic stress tolerance. Plant Sign Behav 9:e28337

    Article  Google Scholar 

  • Liu J, Wang B, Zhang Y, Wang Y, Kong J, Zhu L, Yang X, Zha G (2014) Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis. Plant Growth Regul 74:187–192

    Article  CAS  Google Scholar 

  • Lucas JR, Nadeau JA, Sack FD (2006) Microtubule arrays and Arabidopsis stomatal development. J Exp Bot 57:71–79

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • MacRobbie EA, Kurup S (2007) Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol 175:630–640

    Article  CAS  PubMed  Google Scholar 

  • Marcus AI, Moore RC, Cyr RJ (2001) The role of microtubules in guard cell function. Plant Physiol 125:387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan DH, Kopischke M, Robatzek S (2014) Gate control: guard cell regulation by microbial stress. New Phytol 203:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18:259–266

    Article  CAS  PubMed  Google Scholar 

  • Morejohn LC, Bureau TE, Molè-Bajer J, Bajer AS, Fosket DE (1987) Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252–254

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nick P (2008) Microtubules as sensors for abiotic stimuli. Plant Microtubules 175–203

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Tsz-fung FC (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pillitteri LJ, Torii KU (2012) Mechanisms of stomatal development. Annu Rev Plant Biol 63:591–614

    Article  CAS  PubMed  Google Scholar 

  • Pleskot R, Li J, Žárský V, Potocký M, Staiger CJ (2013) Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18:496–504

    Article  CAS  PubMed  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. (BBA)-Bioenergetics 975:384–394

    Article  CAS  Google Scholar 

  • Rodriguez PL (1998) Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol 38:919–927

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema M, Hedrich R (2010) Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Enviro 33:305–321

    Article  CAS  Google Scholar 

  • Scherzer S, Maierhofer T, Al-Rasheid KA, Geiger D, Hedrich R (2012) Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. Mol Plant 5:1409–1412

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Biol 52:627–658

    Article  CAS  Google Scholar 

  • Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu J-K, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Pandey A, Srivastava AK, Tran L-SP, Pandey GK (2016) Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Rev Biotechnol 36:1023–1035

    Article  CAS  Google Scholar 

  • Tallman G (2004) Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 55:1963–1976

    Article  CAS  PubMed  Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13:603–610

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Matsuyama T, Hashimoto T (1999) Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206:201–206

    Article  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, Masuda C, Miura A, Nakamura Y, Mori IC, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia A, Lee JS, Wasteneys G, Ellis B (2009) Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J 59:565–575

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547

    Article  CAS  PubMed  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Huang RF, Wang XC, Yuan M (2001) Microtubule dynamics are involved in stomatal movement of Vicia faba L. Protoplasma 216:113–118

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Dong K, He Q, Li Y, Wang M, Tao Y (2017) Studies on suppressors of sav2/shade avoidance 2 revealed altered interaction at the interface of αβ-tubulin intradimer affects microtubule dynamics. Plant Growth Regul 81:71–79

    Article  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24:4555–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Song P, Qu Y, Wang P, Jia Q, Guo L, Zhang C, Mao T, Yuan M, Wang X, Zhang W (2017) Phospholipase D δnegatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant Cell Environ 40:2220–2235

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Yu X, Wang X, Zhao R, Li Y, Fan R, Shang Y, Du S, Wang X, Wu F (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ming Yuan (China Agricultural University) and Julian I. Schroeder (University of California) for kindly providing TUA6-GFP and pp2ca seeds, respectively. This work was supported by grants from the Natural Science Foundation of Jiangsu Province (BK20160720) for Y. Qu, the National Natural Science Foundation of China (31470364 and 31670263), and Fundamental Research Funds for Central Universities (KYZ201423) to Q. Zhang.

Author information

Authors and Affiliations

Authors

Contributions

YQ, PS and QZ designed the research; YQ, PS, YH, XJ, QJ, ZX, and CL performed research; and YQ, PS and QZ analyzed data and wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Qun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yana Qu and Ping Song have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 647 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Song, P., Hu, Y. et al. Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis . Plant Growth Regul 84, 467–479 (2018). https://doi.org/10.1007/s10725-017-0353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0353-5

Keywords

Navigation