Skip to main content
Log in

Signalling mechanisms involved in the response of two varieties of Humulus lupulus L. to soil drying: II. changes in the concentration of abscisic acid catabolites and stress-induced phytohormones

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is one of the most common stress signals that appear in plant organs in response to soil drying. Equilibrium between ABA biosynthesis and catabolism regulates ABA accumulation in plants under water stress. The aim of our work was to explore the dynamics of changes in ABA metabolites as well as other stress-induced phytohormones such as jasmonic acid, indole-3-acetic acid, and their respective metabolites in hop [Humulus lupulus (L.)] plants during drying and to identify among them potential signals involved in drought signalling. We showed that the concentrations of all ABA metabolites (except the concentration of ABA glucosyl ester in leaves) increased in the same manner in leaves and xylem sap approximately at the same level of soil water content when the relative water content of leaves decreased. The predominant metabolites in leaves and xylem sap were phaseic acid and dihydroxyphaseic acid. ABA glucosyl ester was not a source of the increased concentration of ABA in leaves and xylem sap because of its considerably lower concentration compared to ABA. The concentration of jasmonates decreased in leaves of hop plants. Changes in auxin concentration suggest that this hormone is involved in the response of hop plants to soil drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABAGE:

Abscisic acid glucosyl ester

DPA:

Dihydroxyphaseic acid

IAA:

Indole-3-acetic acid

IAA-Asp:

Indole-3-acetic acid aspartate

JA:

Jasmonic acid

JA-Ile:

Jasmonic acid isoleucine

oxIAA:

oxindole-3-acetic acid

PA:

Phaseic acid

RWC:

Relative water content

neoPA:

neophaseic acid

SWP:

Stem water potential

References

  • Balint G, Reynolds AG (2013) Impact of irrigation strategies on abscisic acid and its catabolites profiles in leaves and berries of Baco noir grapes. J Plant Growth Regul 32(4):884–900

    Article  CAS  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bergougnoux V, Hlaváčková V, Plotzová R, Novák O, Fellner M (2009) The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato. J Exp Bot 60(4):1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1967) Leaf water potentials measured with a pressure chamber. Plant Physiol 42:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signalling and lateral root development. Plant J 34:67–75

    Article  CAS  PubMed  Google Scholar 

  • Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E (2013) Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol 163:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish K, Zeevaart JAD (1984) Abscisic acid metabolism in relation to water stress and leaf age in Xanthium strumarium. Plant Physiol 76:1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI et al (2006) Systemic signalling of environmental cues in Arabidopsis leaves. J Exp Bot 57:329–341

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signalling network. Annu Rev Plant Biol 6:651–679

    Article  Google Scholar 

  • De Diego N, Pérez-Alfocea F, Cantero E, Lacuesta M, Moncaleán P (2012) Physiological response to drought in radiata pine: phytohormone implication at leaf level. Tree Physiol 32(4):435–449

    Article  PubMed  Google Scholar 

  • Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51:937–944

    Article  CAS  PubMed  Google Scholar 

  • Djilianov DI, Dobrev PI, Moyankova DP, Vankova R, Georgieva DT, Gajdosova S, Motyka V (2013) Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea Rhodopensis. J Plant Growth Regul 32:564–574

    Article  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Gloser V, Balaz M, Jupa R, Korovetska H, Svoboda P (2013) The response of Humulus lupulus to drought: the contribution of structural and functional plant traits. Acta Hortic 1010:149–154

    Article  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24(6):2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung W, Slovik S (1991) Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution. New Phytol 119:361–382

    Article  CAS  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in xylem: where does it come from, where does it go to? J Exp Bot 53(366):27–32

    Article  CAS  PubMed  Google Scholar 

  • Havlova M, Dobrev P, Motyka V, Štorchová H, Libus J, Dobrá J, Malbeck J, Gaudinova A, Vaňková R (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353

    Article  CAS  PubMed  Google Scholar 

  • Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepka M, Benson CL, Gonugunta VK, Nelson KM, Christmann A, Grill E, Abrams SR (2011) Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol 157:2108–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korovetska H, Novak O, Juza O, Gloser V (2014) Signalling mechanisms involved in the response of two varieties of Humulus lupulus L. to soil drying: i. Changes in xylem sap pH and the concentrations of abscisic acid and anions. Plant Soil 380(1–2):375–387

    Article  CAS  Google Scholar 

  • Lackman P, Gonzalez-Guzman M, Tilleman S, Carqueijeiro I, Perez AC, Moses T (2011) Jasmonate signalling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. P Natl A Sci USA 108:5891–5896

    Article  CAS  Google Scholar 

  • Loveys BR (1984) Abscisic acid transport and metabolism in grapevine (Vitis vinifera L.). New Phytol 98(4):575–582

    Article  CAS  Google Scholar 

  • Mahouachi J, Arbona V, Gómez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51

    Article  CAS  Google Scholar 

  • Netting AG, Theobald JC, Dodd IC (2012) Xylem sap collection and extraction methodologies to determine in vivo concentrations of ABA and its bound forms by gas chromatography-mass spectrometry (GC-MS). Plant Methods 8:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niculcea M, Martinez-Lapuente L, Guadalupe Z, Sánchez-Díaz M, Morales F, Ayestarán B, Antolín MC (2013) Effects of Water-Deficit Irrigation on Hormonal Content and Nitrogen Compounds in Developing Berries of Vitis vinifera L. cv. Tempranillo. J Plant Growth Regul 32(3):551–563

    Article  CAS  Google Scholar 

  • Park JE, Park J-Y, Kim Y-S, Staswick PE, Jeon J, Yun J, Kim S-Y, Kim J, Lee Y-H, Park C-M (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Patonnier MP, Peltier JP, Marigo G (1999) Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. J Exp Bot 50:1223–1229

    Article  CAS  Google Scholar 

  • Piotrowska A, Bajguz A (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72:2097–2112

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Wei K, Jia W, Davies WJ, Zhang J (2007) Modulation of root signals in relation to stomatal sensitivity to root-sourced abscisic acid in drought-affected plants. J Integr Plant Biol 49:1410–1420

    Article  CAS  Google Scholar 

  • Rock CD, Sun X (2005) Crosstalk between ABA and auxin signalling pathways in roots of Arabidopsis thaliana (L.) heynh. Planta 222:98–106

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′ -hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter A, Dietz K-J, Hartung W (2002) A possible stress physiological role of abscisic acid conjugates in root-to shoot signalling. Plant Cell Environ 25:223–228

    Article  CAS  PubMed  Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62(8):2615–2632

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Raschke K (1980) Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol 65:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turečková V, Novák O, Strnad M (2009) Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultraperformance liquid chromatography-electrospray tandem mass spectrometry. Talanta 80(1):390–399

    Article  PubMed  Google Scholar 

  • Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J (2012) Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197:139–150

    Article  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Phys 39:439–473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Oldřich Jůza and Helena Steigerová for help with experimental work; Marie Vitásková and Petra Amakorová for help with ABA metabolite and stress induced phyhormone analyses; Petr Svoboda from the Hop Research Institute in Žatec for providing the plant material; and Matthew Nicholls for proofreading. This work was supported by projects no. 206/09/1967 and GA14-34792S from the Czech Science Foundation. We also would like to thank two anonymous reviewers for their comments and recommendations, which helped us improve the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halyna Korovetska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korovetska, H., Novák, O., Turečková, V. et al. Signalling mechanisms involved in the response of two varieties of Humulus lupulus L. to soil drying: II. changes in the concentration of abscisic acid catabolites and stress-induced phytohormones. Plant Growth Regul 78, 13–20 (2016). https://doi.org/10.1007/s10725-015-0058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0058-6

Keywords

Navigation