Skip to main content
Log in

Genome size, ploidy estimates, and leaf morphology of temperate Lindera (Lauraceae) cultivated in North America

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Lindera Thunb. (Lauraceae Juss., nom. cons.) consists of ca. 100 species of shrubs and trees with economic value for medicinal drugs as well as oils used in aromatics, soaps, and biodiesel. Only a few Lindera species have received attention as ornamental plants, but considerable interspecific diversity in habit, foliage, and fruit offer significant potential to plant breeders and horticulture. We used flow cytometry to determine genome sizes of 100 accessions representing 23 temperate Lindera taxa and estimated ploidy level for each sample. In addition, we assessed stomatal size, density, and specific leaf area among accessions. We found a nearly 12-fold difference in 2C DNA context among accessions. We confirmed previous reports of diploid and tetraploid Lindera taxa, and present evidence of triploid (L. glauca (Seibold & Succ.) Blume and L. neesiana (Wall. ex Nees) Kurz), hexaploid (L. angustifolia W.C. Cheng and L. umbellata Thunb.), and octoploid (L. angustifolia, L. angustifolia var. glabra (Nakai) J.M.H.Shaw, and L. salicifolia (Blume) Boerl.) taxa for the first time. Although most taxa sampled were diploid, our findings indicate multiple cytotypes exist for L. angustifolia (6× and 8×) and L. umbellata (2× and 6×). Ploidy level had a significant positive relationship with stomatal size, but not stomatal density nor specific leaf area. Overall, these findings provide insight for plant evolutionary biologists, taxonomists, and breeders interested in Lindera, which remains to be resolved phylogenetically and has not been utilized in ornamental breeding programs. In addition, these data are relevant to plant ecologists and conservationists, particularly in North America where the Laurel wilt pathogen is threatening Lauraceae taxa, including the endangered species Lindera melissifolia and L. subcoriacea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed for the current study will be available on the USDA’s Ag Data Commons Repository: https://data.nal.usda.gov/

References

  • Baranec T, Murín A (2003) Karyogical analyses of some Korean woody plants. Biologia-Section Botany 58(4):797–804

    Google Scholar 

  • Beaulieu J, Leitch I, Patel S, Pendharkar A, Knight C (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179(4):975–986

    Article  PubMed  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200

    Article  Google Scholar 

  • Bennetzen J (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Best GS, Fraedrich SW (2018) An assessment of the potential impact of laurel wilt on clonal populations of Lindera melissifolia (Pondberry). Southeast Nat 17(4):616–628

    Article  Google Scholar 

  • Cao Y, Xuan B, Peng B, Li C, Chai X, Tu P (2016) The genus Lindera: a source of structurally diverse molecules having pharmacological significance. Phytochem Rev 15:869–906

    Article  CAS  Google Scholar 

  • Chen JT, Coate JE, Meru G (2020) Artificial polyploidy in plants. Front Plant Sci 11:621849

    Article  PubMed  PubMed Central  Google Scholar 

  • Chengbin C, Li XL, Sun CR, Song WQ, Chen RY (1998) Studies on the karyotype of 9 species of 5 genera of Lauraceae in China. J Wuhan Bot Res 16(3):219–222

    Google Scholar 

  • Cipollini ML, Wallace-Senft DA, Whigham DF (1994) A model of patch dynamics, seed dispersal, and sex ratio in the dioecious shrub Lindera benzoin (Lauraceae). J Ecol 82:621–633

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846

    Article  CAS  PubMed  Google Scholar 

  • Corneillie S, De Storme N, Van Acker R, Fangel JU, De Bruyne M, De Rycke R, Geelen D, Willats W, Vanholme B, Boerjan W (2019) Polyploidy affects plant growth and alters cell wall composition. Plant Physiol 179(1):74–87

    Article  CAS  PubMed  Google Scholar 

  • Crespel L, Meynet J (2003) Biotechnologies for breeding: manipulation of ploidy level. In: Roberts A (ed) Encyclopedia of Rose Science. Academic Press, Cambridge, pp 5–11

    Chapter  Google Scholar 

  • Cullis C (1990) DNA rearrangements in response to environmental stress. Adv Genet 28:73–97

    Article  CAS  Google Scholar 

  • Darlington CD, Janaki Ammal EK (1945) Chromosome atlas of cultivated plants. George Allen and Unwin, London

    Google Scholar 

  • Del Pozo JC, Ramirez-Parra E (2014) Deciphering the molecular bases for drought tolerance Arabidopsis autotetraploids. Plant Cell Environ 37:2722–2737

    Article  PubMed  Google Scholar 

  • Dirr MA (2018) Commentary on woody plant breeding opportunities. Acta Hortic 1212:285–286. https://doi.org/10.17660/ActaHortic.2018.1212.66

    Article  Google Scholar 

  • Dupont Y (2002) Evolution of apomixis as a strategy of colonization in the dioecious species Lindera glauca (Lauraceae). Popul Ecol 44:293–297

    Article  Google Scholar 

  • Dupont YL, Kato M (1999) Sex ratio variation in dioecious plant species: a comparative ecological study of six species of Lindera (Lauraceae). Nordic J Bot 19(5):529–540

    Article  Google Scholar 

  • eFloras (2023) Missouri botanical garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA. http://www.efloras.org. Accessed 12 September 2023

  • Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ (2021) Exploring environmental selection on genome size in angiosperms. Trends Plant Sci 26(10):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Fraedrich SW, Harrington TC, Bates CA, Johnson J, Reid LS, Best GS, Leininger TD, Hawkins TS (2011) Susceptibility to laurel wilt and disease incidence in two rare plant species, pondberry and pondspice. Plant Dis 95(9):1056–1062

    Article  CAS  PubMed  Google Scholar 

  • Fraedrich SW, Harrington TC, McDaniel BA, Best GS (2016) First report of laurel wilt, caused by Raffaelea lauricola, on spicebush (Lindera benzoin) in South Carolina. Plant Dis 100(11):2330

    Article  Google Scholar 

  • Fridley J, Craddock A (2015) Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phytol 207:659–668

    Article  CAS  PubMed  Google Scholar 

  • Gardiner ES, Leininger TD, Connor KF, Devall MS, Hamel PB, Schiff NM, Wilson AD (2023) Leaf acclimation to soil flooding and light availability underlies photosynthetic capacity of Lindera melissifolia, an endangered shrub of bottomland forests in the Mississippi Alluvial Valley USA Conserv. Physiol 11(1):051

    Google Scholar 

  • Gramling JM (2010) Potential effects of laurel wilt on the flora of North America. Southeast Nat 9(4):827–836

    Article  Google Scholar 

  • Grimshaw J, Bayton R (2009) New trees: recent introductions to cultivation. Kew Publishing, Richmond

    Google Scholar 

  • Hegarty M, Hiscock S (2009) The complex nature of allopolyploid plant genomes. Hered 103:100–101

    Article  CAS  Google Scholar 

  • Hill LM (1995) IOPB chromosome data 10. Int Organ Pl Biosyst Newslett (zurich) 25:8–9

    Google Scholar 

  • Hojsgaard D, Hörandl E (2019) The rise of apomixis in natural plant populations. Front Plant Sci 10:1–13

    Article  Google Scholar 

  • Huang SF, Zhao ZF, Chen ZY, Chen SJ, Huang XX (1989) Chromosome counts on one hundred species and infraspecific taxa. Acta Bot Austro Sin 5:161–176

    Google Scholar 

  • Jensen HW (1941) Heterochromosome formation in Benzoin aestivale (L) Nees. Cytologia 11(4):591–599

    Article  Google Scholar 

  • Jensen HW (1942) The abnormal meiosis of Benzoin aestivale in relation to the origin of sex chromosomes. Am Nat 76(762):109–112

    Article  Google Scholar 

  • Kim SY, Kim CS, Kim GR, Kim JK, Park SH, Jang TS, Lee WK, Lee JK (2008) Analysis of chromosomal count and karyotype of 33 taxa of Korean medicinal plants. Korean Soc Med Crops 16(3):161–167

    Article  Google Scholar 

  • Lattier J, Chen H, Contreras R (2019) Variation in genome size, ploidy, stomata, and rDNA signals in Althea. J Am Soc for Hortic Sci 144(2):130–140

    Article  CAS  Google Scholar 

  • Leininger TD, Gardiner ES, Lockhart BR, Schiff NM, Wilson AD, Devall MS, Hamel PB, Connor KF (2021) Intensity and mode of Lindera melissifolia reproduction are affected by flooding and light availability. Ecol Evol 11:13153–13165

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitch I, Bennett M (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Li J, Christophel DC, Conran JG, Li HW (2004) Phylogenetic relationships within the ‘core’ Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene mat K and nuclear ribosomal DNA ITS regions. Plant Syst Evol 246:19–34

    Article  CAS  Google Scholar 

  • Liu B, Sun G (2019) Transcriptome and miRNAs analyses enhance our understanding of the evolutionary advantages of polyploidy. Crit Rev Biotech 39(2):173–180

    Article  CAS  Google Scholar 

  • Liu M, Wang Z, Li S, Lu X, Wang X, Han X (2017) Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Sci Rep 7:10780

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Chen HH, Tang LZ, Khine PK, Han LH, Song Y, Tan YH (2021) Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae). Plant Divers 44:377–388

    Article  PubMed  PubMed Central  Google Scholar 

  • Long W, Zang R, Schamp BS, Ding Y (2011) Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia 167(4):1103–1113

    Article  PubMed  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Hered 110(2):99–104

    Article  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Nanami S, Okuno S, Hirota SK, Matsuo A, Suyama Y, Tokumoto H, Yoshihara S, Itoh A (2021) Genetic diversity and structure of apomictic and sexually reproducing Lindera species (Lauraceae) in Japan. Forests 12(2):227

    Article  Google Scholar 

  • NatureServe (2023) Available at https://explorer.natureserve.org/ Accessed 12 September 2023

  • Okada H, Tanaka R (1975) Karyological studies in some species of Lauraceae. Taxon 24(2):271–280

    Article  Google Scholar 

  • Olatinwo R, Hwang J, Johnson W (2021) First report of laurel wilt disease caused by Raffaelea lauricola on spicebush in Louisiana. Plant Dis 105(8):2250

    Article  Google Scholar 

  • Owhi J (1965) Flora of Japan. Smithsonian Institution, Washington

    Google Scholar 

  • Padoan D, Mossad A, Chiancone B, Germana MA, Khan PSSV (2013) Ploidy levels in Citrus clementine affects leaf morphology, stomatal density and water content. Theor Exp Plant Physiol 25:283–290

    Article  Google Scholar 

  • Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ (2018) Genome size diversity and its impact on the evolution of land plants. Genes 9(2):88

    Article  PubMed  PubMed Central  Google Scholar 

  • POWO (2023) Plants of the World Online. Facilitated by the royal botanic gardens, kew. http://www.plantsoftheworldonline.org/ Accessed 21 September 2023.

  • Price J (1988) DNA content variation among higher plants. Ann MO Bot Garden 75:1248–1257

    Article  Google Scholar 

  • RStudio Team (2023) RStudio: integrated development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/

  • Runwei Y, Yang Y, Zou G (2014) Cytotoxic and apoptotic effects of Lindera strychnifolia leaf essential oil. J Essent Oil Res 26(4):308–314

  • Sang T, Hsu PS (1996) A review of current theories and methods in cladistics and a cladistic study of twelve Lindera species in eastern China. Acta Phytotaxon Sinica 34(1):12–28

    Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    Article  CAS  PubMed  Google Scholar 

  • Sax K, Sax HJ (1937) Stomata size and distribution in diploid and polyploid plants. J Arnold Arb 18(2):164–172

    Article  Google Scholar 

  • Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E (2017) Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst Evol 303:1093–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonin KA, Roddy AB (2018) Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol 16(1):e2003706

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Soltis PS (1990) Isozyme evidence for ancient polyploidy in primitive angiosperms. Syst Bot 15(2):328–337

    Article  Google Scholar 

  • Soltis P, Soltis D (2020) Plant genomes: markers of evolutionary history and drivers of environmental change. New Phytol Found 3(1):74–82

    Google Scholar 

  • Soltis DE, Buggs RJ, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59(5):1387–1403

    Article  Google Scholar 

  • Song K, Lu P, Tang K, Osborn T (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nat Acad of Sci 92:7719–7723

    Article  CAS  Google Scholar 

  • Stone DE (1964) New chromosome counts for two species of hickory (Carya). Brittoni 16(2):230–230. https://doi.org/10.2307/2805099

    Article  Google Scholar 

  • Sugiyama SI (2005) Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Ann Bot 96(5):931–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton J (2023) Lindera umbellata - Trees and Shrubs Online www.treesandshrubsonline.org/articles/lindera/lindera-umbellata/. Accessed 9 September 2023.

  • Te Beest M, Le Roux J, Richardson D, Brysting A, Suda J, Kubesová M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109(1):19–45

    Article  Google Scholar 

  • Teng CM, Yu SM, Ko FN, Chen CC, Huang YL, Huang TF (1991) Dicentrine, a natural vascular alpha 1-adrenoceptor antagonist, isolated from Lindera megaphylla. Brit J Pharm 104(3):651

    Article  CAS  Google Scholar 

  • Trojak-Goluch A, Kawka-Lipińska M, Wielgusz K, Praczyk M (2021) Polyploidy in industrial crops: applications and perspectives in plant breeding. Agron 11(12):2574

    Article  CAS  Google Scholar 

  • USDA-ARS, National plant germplasm system (2023) Germplasm resources information network (GRIN Taxonomy). National germplasm resources laboratory, Beltsville, Maryland. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=403140. Accessed 13 September 2023.

  • USDA-NRCS (2023) The PLANTS database. National Plant Data Team, Greensboro, NC USA. http://plants.usda.gov. Accessed 12 September 2023

  • Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K, Šilerová A, Šmerda J, Knápek O (2020) Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. Ann Bot 126(2):323–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicient C, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman A (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11(9):1769–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang L, Huang Y, Yan S (2022) A plant-specific module for homologous recombination repair. Proc Nat Acad Sci 119(16):e2202970119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Ke LZ, Lu XQ, Chen J, Zhang ZS (2022) Exploiting unreduced gametes for improving ornamental plants. Front Plant Sci 13:883470. https://doi.org/10.3389/fpls.2022.883470

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong B, Zhang L, Dong S, Zhang Z (2020) Population genetic structure and variability in Lindera glauca (Lauraceae) indicates low levels of genetic diversity and skewed sex ratios in natural populations of mainland China. PeerJ 8:e8304. https://doi.org/10.7717/peerj.8304

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong B, Zhang L, Xie L, Li L, He X, Nui Y, Zhang T, Liao S, Dong S, Zhang Z (2022) Genome of Lindera glauca provides insights into the evolution of biosynthesis genes for aromatic compounds. iScience 25(8):104761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan R, Yang Y, Zou G (2014) Cytotoxic and apoptotic effects of Lindera strychnifolia leaf essential oil. J Ess Oil Res 26(4):308–314

    Article  CAS  Google Scholar 

  • Zemin W (1995) Cytological studies on some plants of woody flora in Huangshan. Anhui Province Wuhan Bot Ress 13(2):102–106

    Google Scholar 

  • Zhang Y, Wang B, Qi S, Dong M, Wang Z, Li Y, Chen S, Li B, Zhang J (2019) Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. Planta 249:635–646

    Article  CAS  PubMed  Google Scholar 

  • Zhao ML, Song Y, Ni J, Yoa X, Tan YH, Xu ZF (2018) Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci Rep 8:8844. https://doi.org/10.1038/s41598-018-27090-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu SS, Comes HP, Tamaki I, Cao YN, Sakaguchi S, Yap ZY, Ding YQ, Qui YX (2020) Patterns of genotype variation and demographic history in Lindera glauca (Lauraceae), an apomict-containing dioecious forest tree. J Biogeog 47:2002–2016

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of Kristina Aguilar, Timothy Block, Andrew Bunting, Emily Coffey, Scott McMahan, Pam Morris Olshefski, Jason Smith, Mary Tipping, and Mark Weathington, who provided tissue samples and information for this study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data analysis was performed by Todd Rounsaville. Data collection of ploidy and leaf traits was performed by Emily Johnson. The first draft of the manuscript was written by Emily Johnson and Todd Rounsaville and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Todd Rounsaville.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, E.K., Pooler, M. & Rounsaville, T. Genome size, ploidy estimates, and leaf morphology of temperate Lindera (Lauraceae) cultivated in North America. Genet Resour Crop Evol (2024). https://doi.org/10.1007/s10722-024-01964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-024-01964-x

Keywords

Navigation