Skip to main content
Log in

Partial diallel in Physalis ixocarpa Brot. to improve fruit production

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Tomate de cáscara (Physalis ixocarpa Brot.) has great potential to generate hybrids and cultivars that present high yields. The objective of this work was to estimate genetic parameters using the REML/BLUP methodology and investigate selection strategies for F1 populations from a partial diallel, to increase fruit production. The crosses were carried out in 2020 and the evaluation of the parents and hybrids were carried out in 2021, using a randomized block design with three replications, and an experimental plot of 10 plants. Combining ability, heterosis, phenotypic correlations, correlation networks, path analysis, and selection indexes were estimated. Genetic variability was found for the descriptors fruit production, number of fruits per plant, fruit transverse axis, and soluble solids. Additive effects were predominant over non-additive gene action. The 92V and 173V parents were recommended to increase fruit production and the number of fruits per plant, due to their general combining ability values. PI02 and PI05 were the hybrids with the highest heterosis estimates for fruit production and number of fruits per plant. The negative correlation between fruit production and soluble solids stood out in the correlation study and trail analysis, thereby assisting in the strategy regarding the selection direction. The selection indexes selected the progenies: PI02, PI04, PI05, 92V and 173V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade CM, Da Silva AA, Conrado TV, Maluf WR, Andrade TM, Oliveira CM (2014) Capacidade combinatória de linhagens de tomateiro em híbridos do tipo italiano. Bragantia 73:237–245. https://doi.org/10.1590/1678-4499.0039

    Article  Google Scholar 

  • Angulo R (2000) Siembra, soporte, poda y fertilización. Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Unibiblos, Universidad Nacional de Colombia, pp 41–49

  • Barrera-Irigoyen CA, Lomelí AP, Magaña-Lira N, Sahagún-Castellanos J, Pérez-Grajales M (2021) Study of inbreeding in tomatillo (Physalis ixocarpa Brot. ex Horm.). Rev Chap, Ser Hortic 27:185–198. https://doi.org/10.5154/r.rchsh.2021.03.006

    Article  Google Scholar 

  • Borém A, Miranda G, Fritsche-Neto R (2017) Melhoramento de Plantas. UFV, Viçosa

    Google Scholar 

  • Camposeco-Montejo NC, Torres VR, Aguilar LAV, Godina FR, Villareal RM, Mendoza AB (2015) Estimation of the combining ability of husk tomato populations. Rev Mex De Cienc Agr 6:437–451

    Google Scholar 

  • Camposeco-Montejo N, Robledo-Torres V, Flores-Naveda A (2020) Estimación de Heterosis y Heterobeltiosis en Híbridos Interpoblacionales de Tomate de Cáscara (Physalis Ixocarpa Brot.). Tecn En Marc 33:91–101. https://doi.org/10.18845/tm.v33i2.4339

    Article  Google Scholar 

  • Cruz CD (2016) Genes software—extended and integrated with the R, Matlab and Selegen. Act Sci 38:547–552. https://doi.org/10.4025/actasciagron.v38i4.32629

    Article  Google Scholar 

  • Cruz CD, Regazzi A, Carneiro P (2012) Modelos biométricos aplicados ao melhoramento genético. UFV, Viçosa

    Google Scholar 

  • Cruz CD, Carneiro P, Regazzi A (2014) Modelos Biométricos Aplicados ao Melhoramento Genético. UFV, Viçosa

    Google Scholar 

  • Elsayed AYAM, Hassan BAA, Hassanin AA, Zyada HG, Ismail HEM, Aguilera JG (2023) Selection parameters for improvement of yield and quality in tomatillo. Ciência e Agrotecnologia 47:e013722. https://doi.org/10.1590/1413-7054202347013722

    Article  Google Scholar 

  • Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D (2012) qgraph: Network visualizations of relationships in psychometric data. J Stat Softw Innsbruck 48:1–18

    Google Scholar 

  • Falconer D (1984) Introduction to the quantitative genetics. Long Scient and Tech, New York

    Google Scholar 

  • Hassan BAA, Elsayed AYAM, Hassanin AA, Ismail HEM (2022) Individual selection for earliness and soluble solids content in tomatillo. Agazig J Agric Res 49:775–783

    Google Scholar 

  • Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiebre Z, Bationo-Kando P, Barro A, Sawadogo B, Kiebre M, Ouedraogo MH, Zongo JD (2017) Estimates of genetic parameters of spider plant (Cleome gynandra L.) of Burkina Faso. Intern J Agric Pol Res 5:138–144. https://doi.org/10.15739/IJAPR.17.016

    Article  Google Scholar 

  • Kumar V, Singh RS, Pal M, Verma RK, Ojha MD (2023) Studies on correlation, heritability and genetic advance in Cape-gooseberry (Physalis peruviana L.) under sub-tropical condition of Bihar. J Environ Biol 44:409–414. https://doi.org/10.22438/jeb/44/3/MRN-1497

    Article  Google Scholar 

  • Lagos TC, Alirio-Vallejo F, Criollo H (2007) Análisis de la aptitud combinatoria de algunas características del fruto de Physalis peruviana L. Agron Colomb 25:36–46

    Google Scholar 

  • Lomelí AP, Márquez SF (1990) Mejoramiento genético de tomate de cáscara (Physalis ixocarpa Brot.). Rev Chap Ser Hortic 71:85–88

    Google Scholar 

  • Lomelí AP, Santiaguillo HJF, Montalvo HD, Pérez GM (1997) Intervalos de cosecha en la variedad CHF1-Chapingo de tomate de cáscara (Physalis ixocarpa, Brot.). Rev Chap, Ser Hortic 3:31–38

    Google Scholar 

  • Lomelí AP, Molina GJD, Cervantes ST, Márquez SF, Sahagún CJ, Ortiz CJ (1998) Heterosis intervarietal en tomate de cáscara (Physalis ixocarpa Brot.). Rev Chap, Ser Hortic 4:31–37

    Google Scholar 

  • Lomelí AP, Galán JDM, Sánchez FM, Castellanos JS, Cereceres JO, Santana TC (2002) Respuestas estimadas y observadas de tres métodos de selección en tomate de cáscara (Physalis ixocarpa Brot.). Rev Fitot Mex 25:171–178

    Google Scholar 

  • Lomelí AP, Contreras AM, Pérez MER, Carballo AC, Pérez JER, Maldonado MM (2004) Parámetros genéticos de tomate de cáscara (Physalis ixocarpa Brot.) Variedad Verde Puebla. Rev Fitot Mex 27:1–7

    Google Scholar 

  • Lomelí AP, Galán JDM, Castellanos JS, Cereceres JO, Sánchez FM, Santana TC, Hernández JFS (2008) Parámetros genéticos en la variedad CHF1 Chapingo de tomate de cáscara (Physalis ixocarpa Brot.). Rev Chap Ser Hortic 14:5–11

    Google Scholar 

  • Lomelí AP, Ramos HG, Pérez JER, Castellanos JS, Lira NM (2013) Selección temprana en familias de medios hermanos maternos de tomate de cáscara de la raza puebla. Rev Chap Ser Hortic 19:5–13. https://doi.org/10.5154/r.rchsh.2012.01.18

    Article  Google Scholar 

  • Lomelí AP, Ponce-Valerio JJ, Sánchez-Del-Castillo F, Magana-Lira N (2014) Desempeño agronómico de variedades de tomate de cáscara en invernadero y campo abierto. Rev Fitot Mex 37:381–391

    Google Scholar 

  • Lomelí AP, Lira NM, Torres AG, Celino FAM, Grajales MP (2018) Polinización manual en dos variedades de tomate de cáscara (Physalis ixocarpa Brot. ex Horm.) en invernadero. Rev Chap Ser Hortic 24:41–52. https://doi.org/10.5154/r.rchsh.2017.02.011

    Article  Google Scholar 

  • Lomelí AP, Ríos-Hernández NE, Santos-Moreno O, Magaña-Lira N (2020) Genetic parameters of the Gema population of husk tomato (Physalis ixocarpa Brot. ex Horm.). Rev Chap Ser Hortic 26:83–94. https://doi.org/10.5154/r.rchsh.2019.09.019

    Article  Google Scholar 

  • Montgomery DC, Peck EA (1981) Introduction to linear regression analysis. John Wiley and Sons, New York

    Google Scholar 

  • Mulamba NN, Mock JJ (1978) Melhoria do potencial produtivo da população de milho Eto Blanco (Zea mays L.) através do melhoramento genético de caracteres vegetais. Jor Egíp De Gen e Cit 7:40–51

    Google Scholar 

  • Pandey KK (1957) Genetics of self-incompatibility in Physalis ixocarpa Brot., a new system. Am J Bot 44:879–887

    Article  Google Scholar 

  • Pérez CDM, Lira NM, Lomelí AP, Mir SGL, Castellanos JS, Grajales MP (2020) White smut (Entyloma australe Speg.) resistance in tomatillo (Physalis spp.) germplasm. Rev Chap Ser Hortic 21:65–77. https://doi.org/10.5154/r.rchsh.2019.09.016

    Article  Google Scholar 

  • R Core Team (2019) (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Resende MDV (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Bre App Biot 16:330–339. https://doi.org/10.1590/1984-70332016v16n4a49

    Article  Google Scholar 

  • Rodrigues GB, Marim BG, Da Silva DJH, Mattedi AP, Almeida VS (2010) Path analysis of primary and secondary yield components in tomato plants of the Salad group. Pesq Agrop Bras 45:155–162. https://doi.org/10.1590/S0100-204X2010000200006

    Article  Google Scholar 

  • Sahagún-Castellanos J, Gómez RF, Peña LA (1999) Efectos de aptitud combinatoria en poblaciones de tomate de cáscara (Physalis ixocarpa Brot.). Rev Chap Ser Hortic 5:23–27. https://doi.org/10.5154/r.rchsh.1998.07.050

    Article  Google Scholar 

  • Silva AD, Zeist AR, Leal MHS, Oliveira JNM, Oliveira GSA, Toroco BR, Da Silva DF, Nogueira AF (2022) Divergence genetic in Physalis species and interspecific hybrids based on morphoagronomic characters. Res Soc Dev 11:1–17. https://doi.org/10.33448/rsd-v11i2.254641

    Article  CAS  Google Scholar 

  • Smith HFA (1936) Discriminant function for plant selection. Ann Eugen 7:240–250

    Article  Google Scholar 

  • Subandi W, Compton A, Empig LT (1973) Comparison of the efficiencies of selection indices for three traits in two variety crosses of corn. Rev Cr Sci 13:184–186

    Google Scholar 

  • Talukder ZH, Khan MH, Das AK, Uddin N (2018) Assessment of genetic variability, heritability and genetic advance in bitter gourd (Momordica charantia L.) for yield and yield contributing traits in Bangladesh. Sch J Appl Sci Res 1:9–18

    Google Scholar 

  • Toupe AMS, Lima JS, Souza IO, Passos AR, Souza EM, Silva LCC (2023) Performance and repeatability in fruit traits of Physalis angulata L. accessions. Genet Resour Crop Evol 71:1341–1353. https://doi.org/10.1007/s10722-023-01838-8

    Article  Google Scholar 

  • Trevisani N, De Melo RC, Colli MP, Coimbra JLM, Guidolin AF (2017) Associations between traits in fisális: a tool for indirect selection of superior plants. Rev Bras De Frutic 39:106. https://doi.org/10.1590/0100-29452017106

    Article  Google Scholar 

  • Vencovsky R, Barriga P (1992) Genética biométrica no fitomelhoramento. Sociedade Brasileira de Genética, Ribeirão Preto

    Google Scholar 

  • Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Zamora-Tavares P, Vargas-Ponce O, Sánchez-Martínez J (2015) Cabrera-Toledo D (2015) Diversity and genetic structure of the husk tomato (Physalis phil adelphica Lam.) in Western Mexico. Genet Resour Crop Evol 62:141–153. https://doi.org/10.1007/s10722-014-0163-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Special thanks to Edgar dos Santos, Jefferson de Souza, and Jainara Ferreira for their assistance in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Said Tejeda Orellana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellana, J.S.T., Silva, L.C.C. & Passos, A.R. Partial diallel in Physalis ixocarpa Brot. to improve fruit production. Genet Resour Crop Evol (2024). https://doi.org/10.1007/s10722-024-01961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-024-01961-0

Keywords

Navigation