Skip to main content
Log in

Discovery of an SSR marker linked to Yellow Vein Mosaic Virus resistance in Okra (Abelmoschus esculentus L. Moench)

  • Research article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Yellow vein mosaic virus (YVMV) poses a significant threat to okra production. Breeding for genetic resistance is a promising approach for YVMV management. This study aimed to investigate the inheritance of YVMV resistance and identify molecular markers associated with resistance in okra. Recombinant inbred lines (RILs) were developed from a cross between a YVMV-resistant breeding line (NS25581) and a susceptible line (NS17556). Phenotypic data from the RIL population exhibited a segregation ratio of 1:3 for resistant and susceptible plants, suggesting the involvement of a single recessive gene in controlling YVMV resistance over two consecutive years (Summer 2020 and 2021). A parental polymorphism survey using 212 markers identified six polymorphic markers. Genotyping of RILs with these markers, followed by single marker analysis, revealed a significant association between YVMV resistance and the SSR54 marker. SSR54 accounted for 4.42% and 5.05% of the phenotypic variance (R2) during Summer 2020 and Summer 2021, respectively. Notably, this study marks the first identification of a marker associated with YVMV resistance in okra. These findings provide valuable insights into the genetic basis of YVMV resistance and pave the way for marker-assisted breeding programs targeting enhanced resistance in okra cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

 References

  • Aladele S, Ariyo O, De Lapena R (2008) Genetic relationships among west African okra (Abelmoschus Caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. Afr J Biotechnol 7:1426–1431

    CAS  Google Scholar 

  • Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A (2006) Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to rice yellow mottle virus. Plant J 47:417–426

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Khan MA, Habit A, Rasheed S, Iftikhar Y (2005) Correlation of environmental conditions with okra yellow vein mosaic virus and Bemisia tabaci population density. Int J Agric Biol 7:142–144

    Google Scholar 

  • Bharathkumar MV, Dhankhar SK, Dahiya MS, Srikanth M (2019) Genetic architecture of resistance to yellow vein mosaic virus disease in advance lines of okra (Abelmoschus esculentus). Indian J Agric Sci 89(4):640–645

    CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Dhankhar SK, Dhankhar BS, Yadava RK (2005) Inheritance of resistance to yellow vein mosaic virus in an interspecific cross of okra (Abelmoschus esculentus). Indian J Agric Sci 75(2):87–90

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dutta OP (1984) Breeding okra for resistance to yellow vein mosaic virus and enation leaf curl virus. Annual Report IIHR Bangalore (India)

  • El-Sherbeny GAR, Khaled AGA, Obiadalla-Ali HA, Ahmed AYM (2018) ISSR markers linked to agronomic traits in okra. Int J Mod Agric 7(1):9–15

    Google Scholar 

  • Fajinmi AA, Fajinmi OB (2010) Incidence of okra mosaic virus at different growth stages of okra plants [Abelmoschus esculentus (L) Moench] under tropical condition. J Gen Mol Virol 2(1):28–31

    Google Scholar 

  • FAOSTAT (2020) Food and Agricultural Organization Statistics. https://wwwfaoorg/faostat/en/#data/QCL

  • Gilbertson RL, Rojas M, Natwick E (2011) Development of integrated pest management (IPM) strategies for whitefly (Bemisia tabaci)-transmissible geminiviruses. In: Thompson WMO (ed) The Whitefly Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, Cham, pp 323–356

    Chapter  Google Scholar 

  • Gulsen O, Karagul S, Abak K (2007) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia 62:41–45

    Article  CAS  Google Scholar 

  • Hughes J (2009) Just famine foods? What contribution can underutilized plant make to food security? Acta Hortic 806:39–47

    Article  Google Scholar 

  • Iannicellia J, Guarinielloa J, Tossib VE, Regaladob JJ, Di-Ciaccioa L, van Barene CM, Pitta Álvarezb SI, Escandón AS (2020) The polyploid effect in the breeding of aromatic and medicinal species. Sci Hortic 260:108854

    Article  Google Scholar 

  • Jambhale ND, Nerkar YS (1981) Inheritance of resistance to okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet 60:313–316

    Article  CAS  PubMed  Google Scholar 

  • Jamir I, Mandal AK, Devi AP, Bhattacharjee J (2020) Screening of genotypes against viral diseases and assessment of yield loss due to yellow vein mosaic virus in okra grown in the eastern part of India. Indian Phytopathol. https://doi.org/10.1007/s42360-019-00183-0

    Article  Google Scholar 

  • Jenkins DJA, Kendall CWC, Marchie A et al (2005) Direct comparison of a dietary portfolio of cholesterol lowering foods with a statin in hypercholesterolemic participants. Am J Clin Nutr 81:380–387

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Souniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Khade YP, Kumar R, Yadav RK (2020) Genetic control of yellow vein mosaic virus resistance in okra (Abelmoschus esculentus). Indian J Agric Sci 90(3):606–609

    Article  CAS  Google Scholar 

  • Kulkarni CS (1924) Mosaic and other related diseases of crops in the Bombay presidency. Poona Agriculture College Magazine, Pune

    Google Scholar 

  • Kumar A, Verma RB, Kumar R, Sinha SK, Kumar R (2017) Yellow vein mosaic disease of okra: a recent management technique. Int J Plant Soil Sci 19(4):1–8

    Article  CAS  Google Scholar 

  • Lee M (1995) DNA marker and plant breeding programmes. Adv Agron 55:265–344

    Article  CAS  Google Scholar 

  • Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JMD (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124:180–187

    Article  CAS  Google Scholar 

  • Martinello GE, Leal NR, Amaral JAT, Pereira MG, Daher RF (2001) Comparison of morphological characteristics and RAPD for estimating genetic diversity in Abelmoschus spp. Acta Hortic 546:101–104

    Article  CAS  Google Scholar 

  • McCouch SR, Doerge RW (1995) QTL mapping in rice. Trend Genet 11:482–487

    Article  CAS  Google Scholar 

  • Mishra GP, Singh B, Seth T, Singh AK, Halder J, Krishnan N, Tiwari SK, Singh PM (2017) Biotechnological advancements and Begomovirus management in Okra (Abelmoschus esculentus L.): status and perspectives. Front Plant Sci 8:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Palomares-Rius FJ, Viruel MA, Yuste-Lisbona FJ, Lopez-Sese AI, Gomez-Guillamon ML (2011) Simple sequence repeat markers linked to QTL for resistance to watermelon mosaic virus in melon. Theor Appl Genet 123:1207–1214

    Article  PubMed  Google Scholar 

  • Patil P, Sutar S, Joseph JK, Malik S, Rao S, Yadav S, Bhat KV (2015) A systematic review of the genus Abelmoschus (Malvaceae) .Rheedea 25:14–30

    Google Scholar 

  • Pharmawat M, Yan G, Finnegan PM (2005) Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Ann Bot 95:1163–1170

    Article  Google Scholar 

  • Piepho HP, Koch G (2000) Codominant analysis of banding data from a dominant marker system by normal mixtures. Genetics 155:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullaiah N, Reddy BT, Moses GJ, Reddy BM, Reddy DR (1998) Inheritance of resistance to yellow vein mosaic virus in okra (Abelmoschus esculentus (L.) Moench). Indian J Genet Plant Breed 58(3):349–352

    CAS  Google Scholar 

  • Ravishankar KV, Muthaiah G, Pitchaimuthu M, Gundale S (2017) Identification of novel microsatellite markers in okra (Abelmoschus esculentus (L.) Moench) through next-generation sequencing and their utilization in analysis of genetic relatedness studies and cross-species transferability. J Genet 97:e39–e47

    Article  Google Scholar 

  • Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K (2011) Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L) Moench in streptozotocin-induced diabetic rats. J Pharm Bioallied Sci 3:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanwal SK, Singh M, Singh B, Naik PS (2014) Resistance to yellow vein mosaic virus and okra enation leaf curl virus: challenges and future strategies meeting report-Indian institute of vegetable research. Curr Sci 106(11):1470–1471

    Google Scholar 

  • Sastry KS, Singh JS (1974) Effect of yellow vein mosaic virus Infection on growth and yield of okra. Indian Phytopathol 27:295–297

    Google Scholar 

  • Sawadogo M, Ouedraogo JT, Balma D, Ouedraogo M, Gowda BS, Botanga C, Timko MP (2009) The use of cross species SSR primers to study genetic diversity of okra from Burkina Faso. Afr J Biotechnol 8(11):2476–2482

    CAS  Google Scholar 

  • Schafleitner R, Kumar S, Lin C, Hegde SG, Ebert A (2013) The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis. Gene 517:27–36

    Article  CAS  PubMed  Google Scholar 

  • Seth T, Chattopadhyay A, Dutta S, Hazra P, Singh B (2017) Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica 213:30–43

    Article  Google Scholar 

  • Sharma BR, Dhillon TS (1983) Genetics of resistance to yellow vein mosaic virus in inter-specific crosses of okra. Genet Agrar 37:267–276

    Google Scholar 

  • Sharma BR, Sharma DP (1984) Breeding for resistance to yellow vein mosaic virus in okra. Indian J Agric Sci 54(10):917–920

    Google Scholar 

  • Shi L, Yang Y, Xie Q, Miao H, Bo K, Song Z, Wang Y, Xie B, Zhang S, Gu X (2018) Inheritance and QTL mapping of cucumber mosaic virus resistance in cucumber (Cucumis Sativus L). PLoS ONE 13(7):1–12

    Article  CAS  Google Scholar 

  • Shwetha A (2022) Assessment of inheritance and mapping of yellow vein mosaic virus (YVMV) resistance in okra [Abelmoschus esculentus (L.) Moench]. Dissertation, University of Horticultural Sciences Bagalkot

  • Singh N, Arora SK, Ghai TR, Dhillon TS (1996) Heterobeltiosis studies in okra (Abelmoschus esculentus L Moench). Punjab Veg Grower 31:18–24

    Google Scholar 

  • Singh HB, Joshi BS, Khanna PP, Gupta PS (1962) Breeding for field resistance to yellow vein mosaic in bhindi. Indian J Genet 22:137–144

    Google Scholar 

  • Thakur MR (1976) Inheritance of yellow vein mosaic in a cross of Okra species Abelmoschus esculentus and A. manihot ssp manihot. SABRAO J Breed Genet 8:69–73

    Google Scholar 

  • Truniger N, Aranda MA (2009) Recessive resistance to plant viruses. Adv Virus Res 75:119–159

    Article  CAS  PubMed  Google Scholar 

  • Venkataravanappa V, Reddy CNL, Jalali S, Briddon RW, Reddy MK (2014) Molecular identification and biological characterisation of a begomovirus associated with okra enation leaf curl disease in India. Eur J Plant Pathol. https://doi.org/10.1007/s10658-014-0463-0

    Article  Google Scholar 

  • Wasala S, Senevirathne SI, Senanayake JB, Navoditha A (2019) Genetic analysis of Okra yellow vein mosaic virus disease resistance in wild relative of okra Abelmoschus angulosus. Plant Genet Resour 17(4):346–351

    Article  CAS  Google Scholar 

  • Yeam I, Cavatorta JR, Ripoll DR, Kang BC, Jahn MM (2007) Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19:2913–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M (2004) The Arabidopsis Cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol 78:6102–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Innovation in Science Pursuit for Inspired Research (INSPIRE), Department of Science and Technology (DST), Ministry of Science and Technology, Government of India for providing the Ph.D. fellowship for first author, and Namdhari Seeds Pvt. Ltd. Bengaluru for the research collaboration with University of Horticultural Sciences Bagalkot.

Funding

The authors declare that no funding was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conducted experiments, data collection and analysis, writing manuscript, RG: Conceptualization, design of experiments, editing manuscript, NB: Conceptualization of experiments, KAK, HRU and SS: Conducted field experiments. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Raghavendra Gunnaiah.

Ethics declarations

Conflct of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shwetha, A., Gunnaiah, R., Basavaraja, N. et al. Discovery of an SSR marker linked to Yellow Vein Mosaic Virus resistance in Okra (Abelmoschus esculentus L. Moench). Genet Resour Crop Evol (2023). https://doi.org/10.1007/s10722-023-01799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-023-01799-y

Keywords

Navigation