Skip to main content
Log in

Evaluating DNA barcoding using cpDNA matK and rbcL for species identification and phylogenetic analysis of Prunus armeniaca L. (Rosaceae) genotypes

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

In this study, DNA barcoding and phylogenetic analysis of five Prunus armeniaca L. genotypes (Cataloglu, Hacihaliloglu, Hasanbey, Hudayi, and Kabaasi) grown in Malatya/Türkiye were conducted using chloroplast DNA (cpDNA) matK and rbcL regions. The cpDNA matK region was amplified using matK472F and matK1248R primers, while the rbcL region was amplified with rbcLaF and rbcLaR primers. The matK and rbcL sequences were utilized to assess nucleotide ratios, genetic distance, and nucleotide diversity (π). The neighbor- joining (NJ) tree including other Prunus species from NCBI was created. In addition, physiochemical and 3-D analysis of matK and rbcL proteins were performed. As a result, π = 0.000549 for matK sequence and π = 0.002657 for rbcL sequence were determined. NJ (neighbor joining) phylogenetic trees formed with both matK and rbcL sequences were found to be compatible with each other. The matK and rbcL gene regions were found to be suitable for phylogenetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelsalam NR, Hasan ME, Javed T, Rabie SM, El-Wakeel HEDM et al (2022) Endorsement and phylogenetic analysis of some Fabaceae plants based on DNA barcoding. Mol Biol Rep 49(6):5645–5657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbulut GB (2023) Structural modeling and functional evaluation of pectate lyase protein from Prunus armeniaca. Erwerbs-Obstbau 65(3):469–477

    Article  CAS  Google Scholar 

  • Asma BM, Kan T, Birhanlı O (2007) Characterization of promising apricot (Prunus armeniaca L.) genetic resources in Malatya, Turkey. Genet Resour Crop Evol 54:205–212

    Article  Google Scholar 

  • Bailey CH, Hough LF (1975) Apricots. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 367–383

    Google Scholar 

  • BeÄŸen HA, EminaÄŸaoÄŸlu Ö (2022) Türkiye Rosaceae familyasına yeni cinsler (Aria, Hedlundia, Torminalis) ile taksonomik katkılar. Turk J Biodivers 5(1):36–49

    Article  Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. PNAS 31:12794–12797

    Article  Google Scholar 

  • Chinnkar M, Jadhav P (2023) Evaluating DNA barcoding using five loci (matK, ITS, trnH-psbA, rpoB, and rbcL) for species identification and phylogenetic analysis of Capsicum frutescens. J Appl Biol Biotechnol 11(3):97–103

    CAS  Google Scholar 

  • Depypere L, Chaerle P, Breyne P, Mijnsbrugge KV, Goetghebeur P (2009) A combined morphometric and AFLP based diversity study challenges the taxonomy of the European members of the complex Prunus L. section Prunus. Plant Syst and Evol 279:219–231

    Article  Google Scholar 

  • Ehliz F, Karakurt Y, Çelik C (2021) Kayısı (Prunus armeniaca L.) ÇeÅŸitlerinin Ssr Belirteçleriyle Moleküler Karakterizasyonu. Isparta Uygulamalı Bilimler Ãœniv Ziraat Fak Derg 16(1):79–85

    Google Scholar 

  • Felsenstein J (1985) Confdence limits on the phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Filiz E, Koç Ä° (2012) Bitkilerde DNA Barkotları (011007). Afyon Kocatepe Ãœniv Fen ve Mühendislik Bilimleri Derg 12(1):53–57

    Google Scholar 

  • Filiz E, Koç Ä° (2014) In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon L. J Bio Sci Biotech 3(1):61–67

    Google Scholar 

  • Furan MA (2023) Species identification and germplasm conservation of origanum based on chloroplast genes. Genet Resour Crop Evolut. https://doi.org/10.1007/s10722-023-01679-5

    Article  Google Scholar 

  • Gamache J, Sun G (2015) Phylogenetic analysis of the genus Pseudoroegneria and the Triticeae tribe using the rbcL gene. Biochem Syst Ecol 62:73–81

    Article  CAS  Google Scholar 

  • Gao Y, Yin S, Yang H, Wu L, Yan Y (2018) Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA Part A 29(5):679–686

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana press, New Jerssy, pp 571–607

    Google Scholar 

  • Gilani SA, Qureshi RA, Khan AM, Potter D (2010) A molecular phylogeny of selected species of genus Prunus L. (Rosaceae) from Pakistan using the internal transcribed spacer (ITS) spacer DNA. Afr J Biotechnol 9(31):4867–4872

    CAS  Google Scholar 

  • Gilani SA, Qureshi RA, Khan M, Ullah F, Nawaz Z, Ahmad I, Potter D (2011) A molecular phylogeny of selected species of Genus Prunus L. (Rosaceae) from Pakistan using the TRN-L and TRN-F spacer DNA. Afr J Biotechnol 10(22):4550–4554

    Google Scholar 

  • Golshani F, Fakheri BA, Solouki M, Mahdinezhad N, Feriz MRK (2020) Evolutionary and phylogenic relationships of wild and crop species of iranian saffron by DNA barcoding. Bangladesh J Bot 49(2):287–296

    Article  Google Scholar 

  • Gostel MR, Carlsen MM, Devine A, Barker KB, Coddington JA, Steier J (2022) Data Release: DNA barcodes of plant species collected for the global genome initiative for gardens (GGI-gardens) II. Diversity 14:234

    Article  CAS  Google Scholar 

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analyses program for windows 95/98/ NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hürkan K (2020) Analysis of various DNA barcodes on the turkish protected designation of origin apricot IÄŸdır Kayısısı (Prunus armeniaca cv. Åžalak). TURJAF 8(9):1982–1987

    Google Scholar 

  • Inal B, Karaca M (2019) MatK ve trnh-psba barkot genleri kullanılarak bazı bitki taksonlarının moleküler olarak sınıflandırılması. Türkiye Tarımsal AraÅŸtırmalar Dergisi 6(1):87–93

    Article  Google Scholar 

  • Ince AG, Karaca M, Onus AN, Bilgen M (2005) Chloroplast matK gene phylogeny of some important species of plants. Akdeniz Universites Ziraat Fakultesi Dergisi 18:157–162

    Google Scholar 

  • Jiang F, Zhang J, Wang S, Yang L, Luo Y, Gao S, Zhang M, Wu S, Hu S, Sun H, Wang Y (2019) The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic Res 6:1–12

    Article  Google Scholar 

  • Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamic plot in Panama. PNAS 106:18621–18626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA et al (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhao Z, Miao XJ (2013) Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet Resour Crop Evol 60:2293–2302

    Article  CAS  Google Scholar 

  • Moradi Ashour B, Rabiei M, Shiran B (2023) Intraspecific identification of some pomegranate (Punica granatum L.) genotypes based on DNA barcoding and morpho-biochemical characteristics. Trees 37:1435–1442

    Article  CAS  Google Scholar 

  • Nigro D, Giove SL, Colasuonno P, de Pinto R, Marcotuli I, Gadaleta A (2022) Characterization of Ribulose-1, 5-bisphosphate carboxylase-oxygenase activase (Rca) genes in durum wheat. Genet Resour Crop Evol 69(6):2191–2202

    Article  CAS  Google Scholar 

  • Paksoy MY, Sevindik E, BaÅŸköse Ä° (2022) DNA barcoding and phylogenetic analysis of endemic Astragalus nezaketiae and Vicia alpestris subsp. hypoleuca (Fabaceae): evidence from nrDNA ITS and cpDNA matK and rbcL sequences. Not Bot Horti Agrobot Cluj Napoca 50(3):12900–12900

    Article  Google Scholar 

  • Pang X, Song J, Zhu Y, Xu H, Huang L, Chen S (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27:165–170

    Article  PubMed  Google Scholar 

  • Penjor T, Yamamoto M, Uehara M, Ide M, Matsumoto N, Matsumoto R, Nagano Y (2013) Phylogenetic relationships of Citrus and its relatives based on matK gene sequences. PLoS ONE 8(4):e62574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Zhao Y, Qian Y, Tan C, Tang C, Chen X (2023) Seed and pollen morphology in nine native Chinese species of Sorbus (Rosaceae). Int J Fruit Sci 23(1):87–101

    Article  Google Scholar 

  • Said EM, Hassan ME (2023) DNA barcodes in Egyptian olive cultivars (Olea europaea L.) using the rbcL and matK coding sequences. J Crop Sci Biotechnol 26:1–10

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Phylogenet Evol 4(4):406–425

    CAS  Google Scholar 

  • Sayed HA, Mostafa S, Haggag IM, Hassan NA (2023) DNA barcoding of Prunus species collection conserved in the National Gene Bank of Egypt. Mol Biotechnol 65:410–418

    Article  CAS  PubMed  Google Scholar 

  • Sevindik E, Murathan ZT, Sevindik M (2020) Molecular genetic diversity of Prunus armeniaca L. (Rosaceae) genotypes by RAPD, ISSR-PCR, and chloroplast DNA (cpDNA) trnL-F sequences. Int J Fruit Sci 20(sup3):S1652–S1661

    Article  Google Scholar 

  • Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55(11):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53(1):449–475

    Article  CAS  PubMed  Google Scholar 

  • Stucky BJ (2012) SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. J Biomol Tech: JPT 23(3):90–93

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulaszewski B, Jankowska-Wróblewska S, ÅšwiÅ‚o K, Burczyk J (2021) Phylogeny of Maleae (Rosaceae) based on complete chloroplast genomes supports the distinction of aria, Chamaemespilus and Torminalis as separate genera, different from Sorbus sp. Plants 10:2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waheed A, Rehman S, Parveen B et al (2023) Assessment of genetic diversity and phylogenetic relationship among brinjal genotypes based on chloroplast rps 11 gene. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-023-01632-6

    Article  Google Scholar 

  • Wang M, Zhao HX, Wang L, Wang T, Yang RW, Wang XL, Zhang L (2013) Potential use of DNA barcoding for the identification of Salvia based on cpDNA and nrDNA sequences. Gene 528(2):206–215

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Xue JH, Zhou SL (2011) New universal matK primers for DNA barcoding angiosperms. J Syst Evol 49:176–181

    Article  Google Scholar 

  • Zhang D, Ren J, Jiang H, Wanga VO, Dong X, Hu G (2023) Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae). Sci Rep 13(1):7237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZTM collected plant specimens. Molecular and data analyses were done by ES and YK. The manuscript was drafted by ES, YK, ZTM and reviewed by all of the authors before submission. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emre Sevindik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevindik, E., Korkom, Y. & Murathan, Z.T. Evaluating DNA barcoding using cpDNA matK and rbcL for species identification and phylogenetic analysis of Prunus armeniaca L. (Rosaceae) genotypes. Genet Resour Crop Evol 71, 1825–1835 (2024). https://doi.org/10.1007/s10722-023-01748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01748-9

Keywords

Navigation