Skip to main content
Log in

Analysis of physio-biochemical responses and expressional profiling of DREB transcription factors for drought tolerance in Aegilops tauschii Coss

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Aegilops tauschii Coss. (2n = 2x = 14, DD) is a weed that competes with wheat for resources and performs better under various abiotic stresses. It is a valuable genetic material source for wheat crop improvement programs. In this study, greenhouse experiments were conducted to investigate the effects of drought levels on physio-biochemical parameters and expression profiling of the drought-resistant DREB gene. Under different drought levels, the physiological parameters such as plant height, dry weight, biomass, and leaf-related parameters exhibited variations. Moreover, photosynthetic parameters such as maximum and minimum fluorescence and photochemical and non-photochemical quenching were influenced by the different levels of drought stress, and their efficiency was noticed depending on the amount of water availability. Biochemical analysis revealed slight but significant changes in peroxidase, catalase, and proline content, while malondialdehyde exhibited higher variations under different drought stress conditions. In the analysis of DREB gene expression, eight populations of Ae. tauschii exhibited higher expression profiles than the control, i.e., no drought conditions. The expression profiles of Ae. tauschii showed a significant increase under drought conditions compared to the control, and the expression profiles of the DREB gene posed visible changes in correlation with observed variations in physio-biochemical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas A, Yu H, Cui H, Li X (2020) Assessment of the genetic diversity in Aegilops tauschii (coss.) By using ssr markers and morphysiological traits. Appl Ecol Environ Res 18:7011–7020

    Article  Google Scholar 

  • Abbas A, Yu H, Cui H, Li X (2021a) Genetic diversity and synergistic modulation of salinity tolerance genes in Aegilops tauschii Coss. Plants 10(7):1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas A, Yu H, Li X, Cui H, Chen J, Huang P (2021b) Selection and validation of reference genes for RT-qPCR analysis in Aegilops tauschii (Coss.) under different abiotic stresses. Int J Mol Sci 22(20):11017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T et al (2022) Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta 255(1):1–23

    Article  Google Scholar 

  • Ahmad A, Aslam Z, Javed T, Hussain S, Raza A, Shabbir R et al (2022) Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agronomy 12(2):287

    Article  CAS  Google Scholar 

  • Alharbi K, Alhaithloul HAS, Alayafi AA, Al-Taisan WA, Alghanem SM, Al-Mushhin AA et al (2022) Impact of Plantago ovata Forsk leaf extract on morpho-physio-biochemical attributes, ions uptake and drought resistance of wheat (Triticum aestivum L.) seedlings. Front Plant Sci 13:999170

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali B, Umar M, Azeem M, Uddin Z, Siddiqui ZS (2022a) Salt tolerance screening of a newly developed wheat variety (AZRC-DK-84) in saline environment using halophytic grass (Cenchrus penisettiformis) as a test model. Acta Physiol Plant 44(8):1–16

    Article  Google Scholar 

  • Ali S, Moon Y-S, Hamayun M, Khan MA, Bibi K, Lee I-J (2022b) Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J Plant Interact 17(1):705–718

    Article  CAS  Google Scholar 

  • Arikan B, Alp FN, Ozfidan-Konakci C, Balci M, Elbasan F, Yildiztugay E et al (2022) Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. Chemosphere 307:136048

    Article  CAS  PubMed  Google Scholar 

  • Barmukh R, Roorkiwal M, Dixit GP, Bajaj P, Kholova J, Smith MR et al (2022) Characterization of “QTL-hotspot” introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea. J Exper Botany. https://doi.org/10.1093/jxb/erac348

    Article  Google Scholar 

  • Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A (2022) Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.134954

    Article  PubMed  Google Scholar 

  • Bublyk O, Andreev I, Kunakh V (2022) Comparative analysis of promoters of DREB2B transcription factor genes in Deschampsia antarctica and other grasses. Cytol Genet 56(5):399–409

    Article  Google Scholar 

  • Bukhari MA, Yousaf M, Ahmad Z, Rafay M, Shah AN, Abbas A et al (2022) Enhancing drought stress tolerance in Camelina (Camelina sativa L.) through exogenous application of potassium. Physiol Plant. https://doi.org/10.1111/ppl.13779

    Article  PubMed  Google Scholar 

  • Chávez-Arias CC, Ligarreto-Moreno GA, Ramírez-Godoy A, Restrepo-Díaz H (2021) Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view. Front Plant Sci. https://doi.org/10.3389/fpls.2021.702841

    Article  PubMed  PubMed Central  Google Scholar 

  • Custodio-Mendoza J, Caamaño-Fernandez C, Lage M, Almeida P, Lorenzo R, Carro A (2022) GC–MS determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal by ultrasound-assisted dispersive liquid-liquid microextraction in beverages. Food Chem 384:132530

    Article  CAS  PubMed  Google Scholar 

  • Fadiji AE, Santoyo G, Yadav AN, Babalola OO (2022) Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2022.962427

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueroa N, Gómez R (2022) Bolstered plant tolerance to low temperatures by overexpressing NAC transcription factors: identification of critical variables by meta-analysis. Planta 256(5):1–13

    Article  Google Scholar 

  • Gerbi H, Paudel I, Zisovich A, Sapir G, Ben-Dor S, Klein T (2022) Physiological drought resistance mechanisms in wild species vs. rootstocks of almond and plum. Trees 36(2):669–683

    Article  Google Scholar 

  • Grehan J (2022) Medical officers on the infamous burma railway: accounts of life, death and war crimes by those who were there with F-force. In: Medical officers on the infamous burma railway, 1–224

  • Guan G, Zhang L, Zhu J, Wu H, Li W, Sun Q (2021) Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J Hazard Mater 402:123542

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Ullah A, Siuta D, Kukfisz B, Iqbal S (2022) Role of WRKY transcription factors in regulation of abiotic stress responses in cotton. Life 12(9):1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajihashemi S, Ehsanpour A (2013) Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia 68(3):414–420

    Article  CAS  Google Scholar 

  • Han J, Xie X, Zhang Y, Yu X, He G, Li Y et al (2022) Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants. Plant Physiol 190(1):421–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Hao M, Cui Y, Kong L, Wang H (2022) Genome-wide survey of the dehydrin genes in bread wheat (Triticum aestivum L.) and its relatives: identification, evolution and expression profiling under various abiotic stresses. BMC Genomics 23(1):1–18

    Article  Google Scholar 

  • Hussain A, Chen C, Yu F, Ahmed SM, Faizan M (2023) Functions of reactive oxygen species in improving agriculture and future crop safety. In: Reactive oxygen species: prospects in plant metabolism. Springer, Cham, pp 53–68

  • Itam M, Abdelrahman M, Yamasaki Y, Mega R, Gorafi Y, Akashi K et al (2020) Aegilops tauschii introgressions improve physio-biochemical traits and metabolite plasticity in bread wheat under drought stress. Agronomy 10(10):1588

    Article  CAS  Google Scholar 

  • Jangir P, Shekhawat PK, Bishnoi A, Ram H, Soni P (2021) Role of Serendipita indica in enhancing drought tolerance in crops. Physiol Mol Plant Pathol 116:101691

    Article  CAS  Google Scholar 

  • Jiang Q, Wang Z, Hu G, Yao X (2022) Genome-wide identification and characterization of AP2/ERF gene superfamily during flower development in Actinidia eriantha. BMC Genomics 23(1):1–16

    Article  Google Scholar 

  • Kang J, Voothuluru P, Hoyos-Miernyk E, Alexander D, Oliver MJ, Sharp RE (2022) Antioxidant metabolism underlies different metabolic strategies for primary root growth maintenance under water stress in cotton and maize. Antioxidants 11(5):820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmacharya A (2022) Molecular Mapping of QTL for Genetic Transformation-Related Trait and CRISPR/Cas9-Mediated Gene Editing in Wheat. North Dakota State University

  • Laguerre M, López-Giraldo LJ, Lecomte J, Baréa B, Cambon E, Tchobo PF et al (2008) Conjugated autoxidizable triene (CAT) assay: a novel spectrophotometric method for determination of antioxidant capacity using triacylglycerol as ultraviolet probe. Anal Biochem 380(2):282–290

    Article  CAS  PubMed  Google Scholar 

  • Leigh FJ, Wright TI, Horsnell RA, Dyer S, Bentley AR (2022) Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement. Heredity 128(5):291–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Yi H (2022) Enhancement of drought tolerance in Arabidopsis plants induced by sulfur dioxide. Ecotoxicology. https://doi.org/10.1007/s10646-022-02530-w

    Article  PubMed  Google Scholar 

  • Li Y, Han X, Ren H, Zhao B, Zhang J, Ren B et al (2022) Exogenous SA or 6-BA maintains photosynthetic activity in maize leaves under high temperature stress. Crop J. https://doi.org/10.1016/j.cj.2022.08.006

    Article  Google Scholar 

  • Liang J, Yi L, Li L, Zhang H, Zhang Y, Deng G et al (2022) Identification of PP2C genes in tibetan hulless barley (Hordeum vulgare var. nudum) under dehydration stress and initiatory expression and functional analysis of HvPP2C59. Plant Mol Biol Rep. https://doi.org/10.1007/s11105-022-01340-y

    Article  PubMed  Google Scholar 

  • Liu J, Yao Y, Xin M, Peng H, Ni Z, Sun Q (2022) Shaping polyploid wheat for success: origins, domestication, and the genetic improvement of agronomic traits. J Integr Plant Biol 64(2):536–563

    Article  PubMed  Google Scholar 

  • Ma J, Wang R, Zhao H, Li L, Zeng F, Wang Y et al (2023) Genome-wide characterization of the VQ genes in Triticeae and their functionalization driven by polyploidization and gene duplication events in wheat. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.125264

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamik S, Sharma AD (2014) Analysis of boiling stable antioxidant enzymes in invasive alien species of Lantana under abiotic stress-like conditions. Brazilian J Botany 37(2):129–141

    Article  Google Scholar 

  • Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P (2021) Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant 172(2):847–868

    Article  CAS  PubMed  Google Scholar 

  • Meena RP, Ghosh G, Vishwakarma H, Padaria JC (2022) Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Mol Biol Rep. https://doi.org/10.1007/s11033-022-07527-6

    Article  PubMed  Google Scholar 

  • Mei F, Chen B, Du L, Li S, Zhu D, Chen N et al (2022) A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell. https://doi.org/10.1093/plcell/koac248

    Article  PubMed  PubMed Central  Google Scholar 

  • Minaei S, Mohammadi SA, Sabouri A, Dadras AR (2022) High genetic diversity in Aegilops tauschii Coss. accessions from North Iran as revealed by IRAP and REMAP markers. J Genet Eng Biotechnol 20(1):1–12

    Article  Google Scholar 

  • Mukarram M, Choudhary S, Kurjak D, Petek A, Khan MMA (2021) Drought: sensing, signalling, effects and tolerance in higher plants. Physiol Plant 172(2):1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Na C, Ziwen Z, Yeyun L, Xianchen Z (2022) Exogenously applied Spd and Spm enhance drought tolerance in tea plants by increasing fatty acid desaturation and plasma membrane H+-ATPase activity. Plant Physiol Biochem 170:225–233

    Article  CAS  PubMed  Google Scholar 

  • Nischal P, Sharma AD (2020) Stomatal and pollen dependant metabolic changes as a metric of stress tolerance and invasive potential of invasive plant–Lantana camara (L.) growing under abiotic stress like conditions. S Afr J Bot 131:406–420

    Article  CAS  Google Scholar 

  • Pour-Aboughadareh A, Omidi M, Naghavi MR, Etminan A, Mehrabi AA, Poczai P (2020) Wild relatives of wheat respond well to water deficit stress: a comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture 10(9):415

    Article  CAS  Google Scholar 

  • Pour-Aboughadareh A, Jadidi O, Shooshtari L, Poczai P, Mehrabi AA (2022) Association analysis for some biochemical traits in wild relatives of wheat under drought stress conditions. Genes 13(8):1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Saha A, Shit M (2022) Climate change and groundwater overdraft impacts on agricultural drought in India: vulnerability assessment, food security measures and policy recommendation. Sci Total Environ 849:157850

    Article  CAS  PubMed  Google Scholar 

  • Rustamova S, Shrestha A, Naz AA, Huseynova I (2021) Expression profiling of DREB1 and evaluation of vegetation indices in contrasting wheat genotypes exposed to drought stress. Plant Gene 25:100266

    Article  CAS  Google Scholar 

  • Satti SH, Raja NI, Ikram M, Oraby HF, Mashwani Z-U-R, Mohamed AH et al (2022) Plant-based titanium dioxide nanoparticles trigger biochemical and proteome modifications in Triticum aestivum L. under biotic stress of Puccinia striiformis. Molecules 27(13):4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckin H, Tiri RNE, Meydan I, Aygun A, Gunduz MK, Sen F (2022) An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: antioxidant, antibacterial and lipid peroxidation inhibition applications. Environ Res. https://doi.org/10.1016/j.envres.2022.112708

    Article  PubMed  Google Scholar 

  • Seth T, Asija S, Umar S, Iqbal N (2023) Nitric oxide and cellular redox homeostasis in plants. In: Gasotransmitters signaling in plant abiotic stress: gasotransmitters in adaptation of plants to abiotic stress. Springer, Cham, pp 109–141

  • Shamuyarira KW, Shimelis H, Mathew I, Zengeni R, Chaplot V (2022) A meta-analysis of combining ability effects in wheat for agronomic traits and drought adaptation: Implications for optimizing biomass allocation. Crop Sci 62(1):139–156

    Article  CAS  Google Scholar 

  • Suárez JC, Vanegas JI, Contreras AT, Anzola JA, Urban MO, Beebe SE et al (2022) Chlorophyll fluorescence imaging as a tool for evaluating disease resistance of common bean lines in the western amazon region of Colombia. Plants 11(10):1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Shahrajabian MH, Khoshkharam M, Cheng Q (2020) Adaptation of acupuncture and traditional Chinese herbal medicines models because of climate change. J Stress Physiol Biochem 16(1):85–90

    Google Scholar 

  • Toppino L, Barchi L, Rotino GL (2022) Next generation breeding for abiotic stress resistance in eggplant. In: Genomic designing for abiotic stress resistant vegetable crops. Springer, Cham, pp 115–151

  • Vijayaraghavareddy P, Lekshmy SV, Struik PC, Makarla U, Yin X, Sreeman S (2022) Production and scavenging of reactive oxygen species confer to differential sensitivity of rice and wheat to drought stress. Crop Environ 1(1):15–23

    Article  Google Scholar 

  • Wang Y, Xia D, Li W, Cao X, Ma F, Wang Q et al (2022a) Overexpression of a tomato AP2/ERF transcription factor SlERF. B1 increases sensitivity to salt and drought stresses. Sci Hortic 304:111332

    Article  CAS  Google Scholar 

  • Wang Z, Zhao X, Ren Z, Abou-Elwafa SF, Pu X, Zhu Y et al (2022b) ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ 45(2):312–328

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang J, Hui W, Zhao F, Wang P, Su C et al (2022) Physiology of plant responses to water stress and related genes: a review. Forests 13(2):324

    Article  Google Scholar 

  • Xu J, Cai M, Li J, Chen B, Chen Z, Jia W et al (2022) Physiological, biochemical and metabolomic mechanisms of mitigation of drought stress-induced tobacco growth inhibition by spermidine. Ind Crops Prod 181:114844

    Article  Google Scholar 

  • Yu H, Yang J, Cui H, Abbas A, Wei S, Li X (2021) Distribution, genetic diversity and population structure of Aegilops tauschii Coss. in major wheat-growing regions in China. Agriculture 11(4):311

    Article  CAS  Google Scholar 

  • Zhang C, Li X, Huang H, Wei S (2007) Alert and prevention of the spreading of Aegilops tauschii, a worst weed in wheat field. Acta Phytophylacica Sinica 34(1):103–106

    CAS  Google Scholar 

  • Zhang L, Cao X, Wang Z, Zhang Z, Li J, Wang Q et al (2022) Brassinolide alleviated chilling injury of banana fruit by regulating unsaturated fatty acids and phenolic compounds. Sci Hortic 297:110922

    Article  CAS  Google Scholar 

  • Zhao X, Yuan X, Xing Y, Dao J, Zhao D, Li Y et al (2023) A meta-analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress. Plant Cell Environ 46(1):199–214

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Hassan MJ, Peng Y, Liu L, Liu W, Zhang Y et al (2021) γ-Aminobutyric acid (GABA) priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress. Front Plant Sci 12:776939

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Chen J, Huang S, Li W, Penuelas J, Chen J et al (2022) Manure amendment can reduce rice yield loss under extreme temperatures. Commun Earth Environ 3(1):1–9

    Article  Google Scholar 

Download references

Acknowledgements and Funding

This work was supported by the National Natural Science Foundation of China (32271587 and 31200316), the Carbon Peak and carbon neutrality technology innovation foundation Jiangsu Province (BK20220030), the Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Study Abroad Scholarship of Jiangsu University, and Senior Talent Fund of Jiangsu University (11JDG150). The authors thank Ediatge (https://www.editage.com/) for providing quality scientific language editing services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Huang or Daolin Du.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, A., Hameed, R., Shahani, A.A.A. et al. Analysis of physio-biochemical responses and expressional profiling of DREB transcription factors for drought tolerance in Aegilops tauschii Coss. Genet Resour Crop Evol 71, 811–822 (2024). https://doi.org/10.1007/s10722-023-01661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01661-1

Keywords

Navigation