Skip to main content
Log in

Genetic characterization of coconut (Cocos nucifera L.) varieties conserved in Vietnam through SCoT marker-based polymorphisms

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Coconut (Cocos nucifera L.) production sustains millions of smallholder farmers and their families around the globe, and also powers a thriving industry of climate-adaptive nutrition and biomaterials. Demand for high-quality planting materials has risen sharply in recent years, calling for greater understanding and potential utilization of the genetic diversity in coconut populations. Genetic diversity among several conserved coconut varieties in Vietnam was investigated to assess the suitability of 15 start codon targeted (SCoT) primers for future selective breeding programs. Amplification of 15 SCoT primers in 57 individuals from 19 coconut varieties revealed high intra-varietal diversity (Nei’s genetic diversity index = 0.237, Shannon’s Information index = 0.352), especially among the Vietnamese Dwarfs. Intriguingly, inter-varietal differentiation accounted for only 9.41% of total genetic variation. The designated SCoT primers were moderately informative. On average, each primer had 9.5 reproducible polymorphic bands per reaction. Polymorphism Information Content (PIC) per locus ranged between 0.217 and 0.390, with Resolving power (Rp) between 0.271 and 0.599. Principal Coordinate Analysis (PCoA) and Unweighted Pair Group Method with Arithmetic mean (UPGMA) analyses revealed distinct clusters for non-native Dwarf, native Dwarf, and Tall varieties. This paper represents the first-of-its-kind attempt to shed light on coconut genetic diversity in Vietnam using molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding authors (Nguyen Bao Quoc and Nguyen Phuong Thao) upon reasonable request.

Abbreviations

SCoT :

Start codon targeted

QTL :

Quantitative trait locus

PIC :

Polymorphism information content

Rp :

Resolving power

PCoA :

Principal coordinate analysis

UPGMA :

Unweighted pair group method with arithmetic mean

References

  • Ashburner GR, Thompson WK, Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci 37(3):992–997

    Article  Google Scholar 

  • Baudouin L, Philippe R, Quaicoe R, Dery S, Dollet M (2009) General overview of genetic research and experimentation on coconut varieties tolerant/resistant to Lethal Yellowing. Oléagineux Corps Gras Lipides 16(2):127–131

    Article  Google Scholar 

  • Chempakam B, Ratnambal MJ (1993) Variation for leaf polyphenols in coconut cultivars. In Advances in Coconut Research and Development. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India, pp. 51–53.

  • Chen H, He XH, Luo C, Zhu J, Li F (2010) Analysis on the genetic diversity of 24 longan (Dimocarpus longan) accessions by SCoT markers. Acta Horticulturae Sinica 37:1651–1654

    CAS  Google Scholar 

  • Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27(1):86

    Article  CAS  Google Scholar 

  • Dasanayaka PN, Nandadasa HG, Everard JMDT, Karunanayaka EH (2009) Analysis of coconut (Cocos nucifera L.) diversity using microsatellite markers with emphasis on management and utilisation of genetic resources. J Nat Sci Found Sri Lanka 37(2):99–109

    Article  CAS  Google Scholar 

  • De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet 103(8):1254–1265

    Article  Google Scholar 

  • Duran Y, Rohde W, Kullaya A, Goikoetxea P, Ritter E (1997) Molecular analysis of East African tall coconut genotypes by DNA marker technology. J Genet Breed 51:279–288

    CAS  Google Scholar 

  • Everard JMDT, Katz M, Gregg K (1996) Inheritance of RAPD markers in the coconut palm Cocos nucifera L. Trop Agric Res 8:124–138

    Google Scholar 

  • Geethanjali S, Rukmani JA, Rajakumar D, Kadirvel P, Viswanathan PL (2018) Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Gen Res 16(2):156

    Article  CAS  Google Scholar 

  • Gunn BF, Baudouin L, Olsen KM (2011) Independent origins of cultivated coconut (Cocos nucifera L.) in the Old World tropics. PLOS ONE 6(6):21143

    Article  CAS  Google Scholar 

  • Guo X, Elston R (1999) Linkage information content of polymorphic genetic markers. Hum Hered 49(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Hayati PK, Hartana A (2000) Genetic diversity of Jombang coconut population based on RAPD markers. In International Conference of Science and Technology for Managing Plant Genetic Diversity in the 21st Century, pp. 12–16.

  • Hennink S, Zeven AC (1990) The interpretation of Nei and Shannon-Weaver within population variation indices. Euphytica 51(3):235–240

    Article  Google Scholar 

  • Lebrun P, N’cho YP, Seguin M, Grivet L, Baudouin L (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101(1):103–108

    Article  CAS  Google Scholar 

  • Lebrun P, Baudouin L, Bourdeix R, Konan JL, Barker JH, Aldam C, Ritter E (2001) Construction of a linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44(6):962–970

    Article  CAS  PubMed  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Loiola CM, Azevedo AON, Diniz LE, Aragao WM, Azevedo CDDO, Santos PHA, Ramos HCC, Pereira MG, Ramos SRR (2016) Genetic relationships among tall coconut palm (Cocos nucifera L.) accessions of the International Coconut Genebank for Latin America and the Caribbean (ICG-LAC), evaluated using microsatellite markers (SSRs). PloS one 11(3):0151309

    Article  CAS  Google Scholar 

  • Manimekalai R, Nagarajan P, Kumaran PM (2006) Comparison of effectiveness of RAPD, ISSR and SSR markers for analysis of coconut (Cocos nucifera L.) germplasm accessions. Trop Agric Res 18:217–226

    Google Scholar 

  • Mauro-Herrera M, Meerow AW, Borrone JW, Kuhn DN, Schnell RJ (2007) Usefulness of WRKY gene-derived markers for assessing genetic population structure: an example with Florida coconut cultivars. Sci Hortic 115(1):19–26

    Article  CAS  Google Scholar 

  • Meerow AW, Wisser RJ, Brown SJ, Kuhn DN, Schnell RJ, Broschat TK (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Gen 106(4):715–726

    Article  Google Scholar 

  • Meerow AW, Noblick L, Borrone JW, Couvreur TL, Mauro-Herrera M, Hahn WJ, Kun DN, Nakamura K, Oleas NH, Schnell RJ (2009) Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Arecaceae) identifies Syagrus as sister group of the coconut. PLoS One 4(10):7353

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niral V, Jerard BA (2018) Botany, origin and genetic resources of coconut. In the coconut palm (Cocos nucifera L.)-research and development perspectives. Springer, Singapore

    Google Scholar 

  • Oyoo ME, Muhammed N, Cyrus KN, Githiri SM (2016) Assessment of the genetic diversity of Kenyan coconut germplasm using simple sequence repeat (SSR) markers. Afr J Biotech 15(40):2215–2223

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera L, Russell JR, Provan J, McNicol JW, Powell W (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Gen 96(3–4):545–550

    Article  CAS  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2003) Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132(1):121–128

    Article  CAS  Google Scholar 

  • Preethi P, Rahman S, Naganeeswaran S, Sabana AA, Gangaraj KP, Jerard BA, Niral V, Rajesh MK (2020) Development of EST-SSR markers for genetic diversity analysis in coconut (Cocos nucifera L.). Mol Biol Rep 47(12):9385–9397

    Article  CAS  PubMed  Google Scholar 

  • Prevost A, Wilkinson MJA (1999) New system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98(1):107–112

    Article  CAS  Google Scholar 

  • Rajesh MK, Jerard BA, Preethi P, Thomas RJ, Karun A (2014) Application of RAPD markers in hybrid verification in coconut. Crop Breed Appl Biotech 14(1):36–41

    Article  CAS  Google Scholar 

  • Rajesh MK, Sabana AA, Rachana KE, Rahman S, Jerard BA, Karun A (2015) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. Biotech 5(6):999–1006

    CAS  Google Scholar 

  • Rajesh MK, Sabana AA, Rachana KE, Rahman S, Ananda KS, Karun A (2016) Development of a SCoT-derived SCAR marker associated with tall-type palm trait in arecanut and its utilization in hybrid (dwarf x tall) authentication. Ind J Gen Plant Breed 76:119–122

    Article  CAS  Google Scholar 

  • Rajesh MK, Fayas TP, Naganeeswaran S, Rachana KE, Bhavyashree U, Sajini KK, Karun A (2016) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253(3):913–928

    Article  CAS  PubMed  Google Scholar 

  • Rajesh MK, Karun A, Parthasarathy VA (2018) Coconut biotechnology. In the coconut palm (Cocos nucifera L.)-research and development perspectives. Springer, Singapore

    Google Scholar 

  • Reynolds KB, Cullerne DP, El Tahchy A, Rolland V, Blanchard CL, Wood CC, Singh SP, Petrie JR (2019) Identification of genes involved in lipid biosynthesis through de novo transcriptome assembly from Cocos nucifera developing endosperm. Plant Cell Physiol 60(5):945–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera R, Edwards KJ, Barker JHA, Arnold GM, Ayad G, Hodgkin T, Karp A (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42:668–675

    Article  CAS  PubMed  Google Scholar 

  • Rohde W, Kullaya A, Rodriguez MJ, Ritter E (1996) Genome analysis of Cocos nucifera L. by PCR amplification of spacer sequences separating a subset of Copia-like Ecorirepelitive elements. Philippine J Crop Sci (philippines) 21:26–31

    Google Scholar 

  • Rohde W, Sniady V, Herran A, Estioko L, Sinje S, Marseillac N, Angelique B, Patricia L, Dieter P, Alois K, Judith R, Norbert B, Rodriguez J (2002) Construction and exploitation of high density DNA marker and physical maps in the perennial tropical oil crops coconut and oil palm: from biotechnology towards marker-assisted breeding. Burotrop Bulletin 20:13–14

    Google Scholar 

  • Rohlf FJ (2002) NTSYSpc: Numerical taxonomy system, ver. 2.1. Setauket, NY: Exeter Publishing Ltd.

  • Saensuk C, Wanchana S, Choowongkomon K, Wongpornchai S, Kraithong T, Imsabai W, Chaichoompu E, Ruanjaichon V, Toojinda T, Vanavichit A, Arikit S (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334

    Article  CAS  PubMed  Google Scholar 

  • Shalini KV, Manjunatha S, Lebrun P, Berger A, Baudouin L, Pirany N, Raganath RM, Prasad DT (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Spellerberg IF, Fedor PJA (2003) A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob Ecol Biogeogr 12(3):177–179

    Article  Google Scholar 

  • Teulat B, Aldam C, Trehin R, Lebrun P, Barker JH, Arnold GM, Karp A, Baudouin L, Rognon F (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100(5):764–771

    Article  CAS  Google Scholar 

  • Upadhya A, Jayadev K, Manimekalai R, Parthasarathy VA (2004) Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Sci Hortic 99(3–4):353–362

    Article  CAS  Google Scholar 

  • Xiao Y, Luo Y, Yang Y, Fan H, Xia W, Annaliese S, Mason AS, Zhao S, Sager R, Qiao F (2013) Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Plant Omics 6(3):193–200

    Google Scholar 

  • Yang Y, Bocs S, Fan H, Armero A, Baudouin L, Xu P, Xu J, This D, Hamelin C, Iqbal A, Qadri R, Zhou L, Li Z, Wu Y, Ma Z, Issali AE, Rivallan R, Liu N, Xia W, Peng M, Xiao Y (2021) Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Commun Biol 4(1):1–14

    Article  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle TB, Ye ZH, Mao JX (1997) Popgene, version 1.32; the user-friendly shareware for population genetic analysis. Can Univ Alberta Mol Biol Biotechnol Centre 10:295–301

    Google Scholar 

  • Zhang J, Guo D, Gong Y, Liu C, Li M, Zhang G (2011) Optimization of start codon targeted polymorphism PCR (SCoT-PCR) system in Vitis vinifera. J Fruit Sci 28(2):209–214

    CAS  Google Scholar 

  • Zizumbo-Villarreal D, Ruiz-Rodriguez M, Harries H, Colunga-GarciaMarin P (2006) Population genetics, lethal yellowing disease, and relationships among mexican and imported coconut ecotypes. Crop Sci 46:2509–2516

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Dong Go Coconut Research Center for generous provision of leaf materials and information.

Funding

This research was funded by the Ministry of Science and Technology (MOST, Vietnam) under grant number ĐTĐL.CN-12/19.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NBQ, Data curation: NHMK, HNXM, NDNP, NBQ, Formal analysis: NHMK, Funding acquisition: NPT, Investigation: NHMK, NTQ, HNXM, NDNP, NPT and NBQ, Methodology: NBQ, NHMK, Validation: NBQ, NPT, Writing—original draft: NHMK, NBQ, Writing—review and editing: NBQ, NPT, NTQ.

Corresponding authors

Correspondence to Nguyen Phuong Thao or Nguyen Bao Quoc.

Ethics declarations

Conflict of interest

The authors of this article have no conflicts of interest.

Consent for publication

All authors have given their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khang, N.H.M., Quang, N.T., Mai, H.N.X. et al. Genetic characterization of coconut (Cocos nucifera L.) varieties conserved in Vietnam through SCoT marker-based polymorphisms. Genet Resour Crop Evol 69, 385–398 (2022). https://doi.org/10.1007/s10722-021-01237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01237-x

Keywords

Navigation