Skip to main content
Log in

Assessment of Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey accessions using universal rice primers and molecular cytogenetics

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The aim of this study was to make morphological and molecular characterization of tall wheatgrass (Thinopyrum ponticum) accessions naturally found in Canakkale flora, Turkey. The seeds collected from 24 different locations in Canakkale vicinity were planted in the nursery field to determine thirteen morphological parameters. Twelve universal rice primers (URPs) were used to reveal genetic relationship among the accessions while ploidy analysis was done based on the nuclear DNA content of plants determined by Flow cytometer. Fluorescence in situ hybridization (FISH) method was used to determine 5S and 45S rDNA distributions on mitotic chromosomes. The agro-morphological data showed significant variation among the accessions for all parameters measured, except the number of nodes per plant. Twelve URP primers produced 73 alleles in total and 63 of those were polymorphic. The highest polymorphism information content value was obtained from URP 17R with 0.82. The first three components of Eigen values in PCA analysis explained 41.1% of total variation. The 2C nuclear DNA contents of the accessions ranged from 41.17 to 45.49 pg. All the accessions were determined as decaploid with 2n = 70 chromosomes. FISH analysis provided 18–20 interstial 5S rDNA and 12–14 terminal 45S rDNA loci. The results concluded that tall wheatgrass accessions used in this study contain a significant variation in morphological traits and PCR-based DNA polymorphism which could be used as a new genetic resource in breeding programs of tall wheatgrass and wheat improvement for intra- and intergeneric crosses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal R, Singh VB, Shukla R, Gurjar M, Gupta S, Sharma R (2010) URP based DNA fingerprinting of Bipolaris sorokiniana isolates causing spot blotch of wheat. J Phytopathol 158:210–216

    Article  CAS  Google Scholar 

  • Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Zanatta AC, Prestes A, Moraes-Fernandes MI, Guerra M (2003) Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol 26:505–510

    Article  CAS  Google Scholar 

  • Cabi E (2010) Taxonomic revision of the tribe Triticeae dumortier (Poaceae) in Turkey. PhD. Thesis, Middle East Technical University

  • Ceoloni C, Kuzmanović L, Gennaro A, Forte P, Giorgi D, Grossi MR, Bitti A (2014) Genomes, chromosomes and genes of perennial Triticeae of the genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and ‘precision’ breeding. In: Tuberosa R, Graner A, Frison E (eds) Advances in genomics of plant genetic resources. Springer, Dordrech, pp 333–358

    Chapter  Google Scholar 

  • Cires E, Cuesta C, Revilla MA, Prieto JAF (2010) Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an Alpine–Pyrenean–Cantabrianpolyploid group. Biol J Lin Soc 101:251–271

    Article  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Csete S, Stranczinger S, Szalontai B, Farkas A, Pal R (2011) Tall wheatgrass cultivar Szarvasi-1 (Elymus elongatus subsp. Ponticus cv. Szarvasi-1) as a potential energy crop for Semi-Arid Lands of Eastern Europe. In: Nayeripour M (ed) Sustainable growth and applications in renewable energy sources. Pub InTech, Hungary, pp 269–294

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–307

    Article  Google Scholar 

  • Dizkirici A, Kaya Z, Cabi E, Doğan M (2010) Phylogenetic relationships of Elymus L. and related genera (Poaceae: triticeae) based on the nuclear ribosomal internal transcribed spacer sequences. Turk J Bot 36:467–478

    Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128; author reply 129

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear dna content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  PubMed  Google Scholar 

  • Drapikowska M, Susek K, Hasterok R, Szkudlarz P, Celka Z, Jackowiak B (2013) Variability of stomata and 45S and 5S rDNAs loci characteristics in two species of Anthoxanthum genus: A. aristatum and A. odoratum (Poaceae). Acta Biol Hung 64:352–363

    Article  CAS  PubMed  Google Scholar 

  • Elliott TA, Gregory TR (2015) What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc B Biol Sci 370:20140331

    Article  Google Scholar 

  • Falasca SL, Miranda C, Alvarez SP (2017) Agro-ecological zoning for tall wheatgrass (Thinopyrum ponticum) as a potential energy and forage crop in salt-affected and dry lands of Argentina. Arch Crop Sci 1:10–19

    Google Scholar 

  • Harmoney KR (2015) Cool-season grass biomass in the southern mixed-grass prairie region of the USA. Bioenergy Res 8:203–210

    Article  Google Scholar 

  • Hasterok R, Langdon T, Taylor S, Jenkins G (2002) Combinatorial labelling of DNA probes enables multicolour fluorescence in situ hybridisation in plants. Folia Histochem Cytobiol 40:319–323

    PubMed  Google Scholar 

  • Hasterok R, Marasek A, Donnison IS, Armstead I, Thomas A, King IP, Wolny E, Idziak D, Draper J, Jenkins G (2006a) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173:349–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006b) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idrees M, Irshad M (2014) Molecular markers in plants for analysis of genetic diversity: a review. Eur Acad Res 2:1513–1540

    Google Scholar 

  • Jenkins G, Hasterok R (2007) BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat Protoc 2:88–98

    Article  CAS  PubMed  Google Scholar 

  • Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 27:153–165

    Article  CAS  PubMed  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kang HW (2018) PCR fingerprinting of diverse genomes from bacterial strains using universal rice primer (URP). Int J Biosci Biotechnol 6:51–64

    Article  Google Scholar 

  • Kang HW, Park DS, Go SJ, Eun MY (2002) Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol Cells 13:281–287

    CAS  PubMed  Google Scholar 

  • Kellogg EA (2015) Flowering plants monocots. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, Switzerland

    Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics 2:141–162

    CAS  Google Scholar 

  • Lee JH, Ma Y, Wako T, Li LC, Kim KY, Park SW, Uchiyama S, Fukui K (2004) Flow karyotypes and chromosomal DNA contents of genus Triticum species and rye (Secale cereale). Chromosome Res 12:93–102

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang X (2009) Thinopyrum ponticum and T. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom 36:557–565

    Article  CAS  Google Scholar 

  • Li D, Li T, Wu Y, Zhang X, Zhu W, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H (2018) FISH-based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Front Plant Sci 9:526

    Article  PubMed  PubMed Central  Google Scholar 

  • Linc G, Sepsi A, Molnar-Lang M (2012) A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res 136:138–144

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang D, Yap EH, Yap E, Lee MA (2002) Identification of a novel repetitive DNA element and its use as a molecular marker for strain typing and discrimination of ara- from ara + Burkholderia pseudomallei isolates. J Med Microbiol 51:76–82

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol 170:411–420

    Article  CAS  PubMed  Google Scholar 

  • Mandala G, Tundo S, Francesconi S, Gevi F, Zolla L, Ceoloni C, D’Ovidio R (2019) Deoxynivalenol detoxification in transgenic wheat confers resistance to fusarium head blight and crown rot diseases. Mol Plant-Microbe Interact 32:583–592

    Article  CAS  PubMed  Google Scholar 

  • McArthur RI, Zhu X, Oliver RE, Klindworth DL, Xu SS, Stack RW, Wang RR, Cai X (2012) Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res 20:699–715

    Article  CAS  PubMed  Google Scholar 

  • Monono EM, Nyren PE, Berti MT, Pryor SW (2013) Variability in biomass yield, chemical composition, and ethanol potential of individual and mixed herbaceous biomass species grown in North Dakota. Ind Crops Prod 41:331–339

    Article  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    Article  CAS  PubMed  Google Scholar 

  • Pearson CH, Larson SR, Keske CMH, Jensen KB (2015) Native grasss for biomass production at high elevations. In: Cruz MV, Dierig DA (eds) Industrial crops: breeding for bioenergy and bioproducts. Springer, New York, pp 101–132

    Chapter  Google Scholar 

  • Petersen KV, Martinussen J, Jensen PR, Solem C (2013) Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl Environ Microbiol 79:3563–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey MK, Vogel J, Tingey SV, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Robins JG (2010) Cool-season grasses produce more total biomass across the growing season than do warm-season grasses when managed with an applied irrigation gradient. Biomass Bioenerg 34:500–505

    Article  Google Scholar 

  • SAS I (1997) SAS/STAT software: changes and enhancements through release 6.12. SAS Inst., Cary, NC

  • Sharma A, Sonah H, Deshmukh RK, Gupta NK, Singh NK, Sharma TR (2011) Analysis of genetic diversity in earthworms using DNA markers. Zool Sci 28:25–31

    Article  Google Scholar 

  • Smith KF (1996) Tall wheatgrass (Thinopyrum ponticum (Podp.) Z.W. Liu + R.R.C. Wang): a neglected resource in Australian pasture. N Z J Agric Res 39(4):623–627

    Article  Google Scholar 

  • Song H, Nan ZB, Tian P (2015) Phylogenetic analysis of Elymus (Poaceae) in western China. Genet Mol Res 14:12228–12239

    Article  CAS  PubMed  Google Scholar 

  • Symonova R (2019) Integrative rDNAomics-importance of the oldest repetitive fraction of the eukaryote genome. Genes (Basel) 10:345

    Article  CAS  Google Scholar 

  • Tiryaki I, Tuna M (2012) Determination of intraspecific nuclear DNA content variation in common vetch (Vicia sativa L.) lines and cultivars based on two distinct internal reference standards. Turk J Agric For 36:645–653

    CAS  Google Scholar 

  • Vogel KP, Arumuganathan K, Jensen KB (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci 39:661–667

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V (2017) Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Plant Biol 17:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels K, Snowdon RJ (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Wang RCC (2011) Agropyron and psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 77–106

    Chapter  Google Scholar 

  • Yang W, Schuster C, Prunet N, Dong Q, Landrein B, Wightman R, Meyerowitz EM (2020) Visualization of protein coding, long noncoding, and nuclear RNAs by fluorescence in situ hybridization in sections of shoot apical meristems and developing flowers. Plant Physiol 182:147–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X (2018) Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet 131:2381–2395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this study was provided by Canakkale Onsekiz Mart University (COMU, BAP Grant #: FYL-2017-1085). We thank Ersin Karabacak for his help on taxonomic verification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskender Tiryaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiryaki, I., Karaoğlu, G.B., Yücel, G. et al. Assessment of Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey accessions using universal rice primers and molecular cytogenetics. Genet Resour Crop Evol 68, 1875–1888 (2021). https://doi.org/10.1007/s10722-020-01101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01101-4

Keywords

Navigation