Skip to main content
Log in

Social and environmental influences on tartary buckwheat (Fagopyrum tataricum Gaertn.) varietal diversity in Yunnan, China

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Effective conservation strategies aimed to protect crop genetic resources require multiple sources of information. We used a combination of AFLP genotyping and farmer surveys to understand the extent, distribution and management of tartary buckwheat (Fagopyrum tataricum Gaertn.) diversity in its center of origin in Yunnan Province, China. We found genetic evidence of gene flow in tartary buckwheat throughout the study area, with small but statistically significant regional and village-level components. We also found genetic differentiation by seed color. Although most farmers reported exchanging seed in localized kinship networks, our results imply homogenizing gene flow is occurring. Yi ethnic farmers tend to plant more buckwheat than non-Yi farmers, and we found that in some communities, Yi farmers serve as seed sources for farmers of other ethnicities. Different tartary buckwheat varieties did not have different end uses; rather farmers maintained varietal diversity in order to protect crop yield and quality. Individual farmers’ seed exchange practices reflect their ideas about components of seed quality, as well as priorities in protecting buckwheat yield. From the standpoint of genetic resources conservation, the presence of a culturally rich farmer exchange network and hierarchical structuring of tartary buckwheat genetic diversity demonstrates the importance of maintaining an interlinked community of tartary buckwheat farmers in Yunnan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez N, Garine E, Khasah C, Dounias E, Hossaert-McKey M, McKey D (2005) Farmers’ practices, metapopulation dynamics, and conservation of agricultural biodiversity on-farm: a case study of sorghum among the Duupa in sub-sahelian Cameroon. Biol Conserv 121(4):533–543

    Article  Google Scholar 

  • Bajracharya J, Steele KA, Jarvis DI, Sthapit BR, Witcombe JR (2006) Rice landrace diversity in Nepal: variability of agro-morphological traits and SSR markers in landraces from a high-altitude site. Field Crops Res 95(2–3):327–335

    Article  Google Scholar 

  • Bajracharya J, Brown AHD, Joshi BK, Panday D, Baniya BK, Sthapit BR, Jarvis DI (2011) Traditional seed management and genetic diversity in barley varieties in high-hill agro-ecosystems of Nepal. Genet Resour Crop Evol 59(3):389–398

    Article  Google Scholar 

  • Bellon MR (2004) Conceptualizing interventions to support on-farm genetic resource conservation. World Dev 32(1):159–172

    Article  Google Scholar 

  • Bellon MR, Aguirre A, Berthaud J, Smale M, Dıaz J, Taba S, Aragon FC, Castro H (2003) Participatory landrace selection for on-farm conservation: an example from the Central Valleys of Oaxaca, Mexico. Genet Resour Crop Evol 50(4):401–416

    Article  Google Scholar 

  • Campbell C (1997) Buckwheat. Fagopyrum esculentum Moench. Promoting the conservation and use of underutilized and neglected crops 19. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Campbell C (2003) Buckwheat crop improvement. Fagopyrum 20:1–6

    Google Scholar 

  • Chybicki IJ, Oleksa A, Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107(6):589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fofana IJ, Silue S, Diarrassouba N, Kadio AA, Sangare A (2013) Comparative analyses of amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) in genetic diversity of Teak (Tectona grandis L. f). Int J Adv Agric Res 1:114–123

    Google Scholar 

  • Fogelqvist J, Niittyvuopio A, Ågren J, Savolainen O, Lascoux M (2010) Cryptic population genetic structure: the number of inferred clusters depends on sample size. Mol Ecol Resour 10(2):314–323

    Article  PubMed  Google Scholar 

  • Gill-Langarica H (2011) Genetic diversity analysis of common beans based on molecular markers. Genet Mol Biol 34(4):595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, p 542

  • Hlásná Cepková P, Janovská D, Stehno Z (2009) Assessment of genetic diversity of selected tartary and common buckwheat accessions. Span J Agric Res 4:844–854

    Article  Google Scholar 

  • Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57(3):347–366

    Article  PubMed  Google Scholar 

  • Hou Y, Zhang Z, Wu B, Li Y (2009) Genetic diversity analysis of tartary buckwheat using AFLP markers. Agric Sin 42(12):4166–4174

    CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jensen HR, Belqadi L, De Santis P, Sadiki M, Jarvis DI, Schoen DJ (2012) A case study of seed exchange networks and gene flow for barley (Hordeum vulgare subsp. vulgare) in Morocco. Genet Resour Crop Evol 60(3):1119–1138

    Article  Google Scholar 

  • Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27(21):3070–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanlou KM, Vandepitte K, Asl LK, Van Bockstaele E (2011) Towards an optimal sampling strategy for assessing genetic variation within and among white clover (Trifolium repens L.) cultivars using AFLP. Genet Mol Biol 34(2):252–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishore G, Gupta S, Pandey A (2012) Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochem Syst Ecol 43:32–41

    Article  CAS  Google Scholar 

  • Louette D, Charrier A, Berthaud J (1997) In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Econ Bot 51(1):20–38

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajan L, Smale M (2007) Village seed systems and the biological diversity of millet crops in marginal environments of India. Euphytica 155(1–2):167–182

    Article  Google Scholar 

  • Nelson MF, Anderson NO (2013) How many marker loci are necessary? Analysis of dominant marker data sets using two popular population genetic algorithms. Ecol Evol 3(10):3455–3470

    PubMed  PubMed Central  Google Scholar 

  • Ohnishi O (1998) Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat, and of tatary buckwheat. Econ Bot 52(2):123–133

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porath J, Flodin P (1959) Gel filtration: a method for desalting and group separation. Nature 183(4676):1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radanielina T, Ramanantsoanirina A, Raboin L-M, Frouin J, Perrier X, Brabant P, Ahmadi N (2013) The original features of rice (Oryza sativa L.) genetic diversity and the importance of within-variety diversity in the highlands of Madagascar build a strong case for in situ conservation. Genet Resour Crop Evol 60(1):311–323

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/

  • Rosenberg NA (2003) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Rufa L (2004) The development and utilization of tartary buckwheat resources. In: Proceedings of the 9th international symposium on buckwheat, Prague, pp 252–258

  • Samberg LH, Fishman L, Allendorf FW (2013) Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system. Evol Appl 6(8):1133–1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders M (2010) Losing ground: An uncertain future for buckwheat farming in its center of origin. In: Zotikov V, Parakhin N (eds) Advances in buckwheat research—proceedings from the 11th international symposium on buckwheat. All-Russia Research Institute of Legumes and Groat Crops, Orel, pp 60–68

    Google Scholar 

  • Saunders Bulan M, Posner JL, Peng D, Emshwiller E, Wang X, Li J et al (2015) Old crop, new society: persistence and change of tartary buckwheat farming in Yunnan China. Human Ecol (in revision)

  • Singh M, Chabane K, Valkoun J, Blake T (2006) Optimum sample size for estimating gene diversity in wild wheat using AFLP markers. Genet Resour Crop Evol 53(1):23–33

    Article  CAS  Google Scholar 

  • Skellam JG (1948) A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials. J R Stat Soc Series B Methodol 10(2):257–261

    Google Scholar 

  • Tsuji K, Ohnishi O (2000) Origin of cultivated Tatary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genet Resour Crop Evol 47(4):431–438

    Article  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Brussells

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis [Internet]. Springer, New York. http://had.co.nz/ggplot2/book

  • Wright S (1921) Systems of mating. Genetics 6:111–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Matsudo S, Hagiwara M, Matano T, Ujihara A (1995) Variation of days to flowering on tartary buckwheat collected from various areas in the world. In: Current advances in buckwheat research. Shinshu Japan, pp 405–410

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104(12):127–139

    Article  Google Scholar 

  • Zhao ZC, Zhou MD, Luo DZ, Li FL and Cao JX (1998) Ethnobotanical investigation of tartary buckwheat in China. In: Advances in buckwheat research—proceedings from the 7th international symposium on buckwheat, Manitoba, Canada, pp 57–63

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8(6):907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the buckwheat farmers of Yunnan for generously sharing their thoughts, time, seeds and hospitality. We thank Yang Yahan, Yang Yongping, and Yang Jing for invaluable logistical support in the field, and Wei Jing, Brian Walsh, Jane Bradbury, Andy Gardner, Lauren Moscoe, Dan Marschalek and Matt Hayes for help in the laboratory. We also thank Lauren Moscoe and David Duncan for thoughtful comments on this manuscript. This research was completed as part of the Ph.D. dissertation of the first author and funded by a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) grant “Biodiversity Conservation and Sustainable Livelihoods in Southwest China” to UW-Madison, and by the UW-Madison Department of Agronomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Saunders Bulan.

Additional information

Joshua L. Posner—Deceased

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunders Bulan, M., Wu, J., Emshwiller, E. et al. Social and environmental influences on tartary buckwheat (Fagopyrum tataricum Gaertn.) varietal diversity in Yunnan, China. Genet Resour Crop Evol 64, 113–125 (2017). https://doi.org/10.1007/s10722-015-0337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0337-0

Keywords

Navigation