Skip to main content
Log in

A comparative study of ancient DNA isolated from charred pea (Pisum sativum L.) seeds from an Early Iron Age settlement in southeast Serbia: inference for pea domestication

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The development of agriculture was a key turning point in human history, a central part of which was the evolution of new plant forms, domesticated crops. Grain legumes were domesticated in parallel with cereals and formed important dietary components of early civilizations. First domesticated in the Near East, pea has been cultivated in Europe since the Stone and Bronze Ages. In this study, we present a molecular analysis of ancient DNA (aDNA) extracted from carbonized pea seeds recovered from deposits at Hissar, in southeast Serbia, that date to the eleventh century B.C. Four selected chloroplast DNA loci (trnSG, trnK, matK and rbcL) amplified in six fragments of 128–340 bp with a total length of 1,329 bp were successfully recovered in order to distinguish between cultivated and wild gathered pea. Based on identified mutations, the results showed that genuine aDNA was analyzed. Moreover, DNA analysis resulted in placing the ancient sample at an intermediate position between extant cultivated [Pisum sativum L. and wild P. sativum subsp. elatius (Steven ex M. Bieb.) Asch. et Graebn.]. Consequently, based on a combination of morphological and molecular data, we concluded that the material represents an early domesticated pea. We speculate that Iron Age pea would be of colored flower and pigmented testa, similar to today’s fodder pea (P. sativum subsp. sativum var. arvense (L.) Poir.), possibly of winter type. This is the first report of successful aDNA extraction and analysis from any legume species thus far. The implications for pea domestication are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbo S, Zezak I, Schwartz E, Lev-Yadun S, Gopher A (2008) Experimental harvesting of wild peas in Israel: implications for the origins of Near East farming. J Arch Sci 35:922–929. doi:10.1016/j.jas.2007.06.016

    Article  Google Scholar 

  • Abbo S, Rachamim E, Zehavi Y, Zezak I, Lev-Yadun S, Gopher A (2011) Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann Bot 107:1399–1404. doi:10.1093/aob/mcr081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abbo S, Lev-Yadun S, Heun M, Gopher A (2013) On the ‘lost’ crops of the neolithic Near East. J Exp Bot 64:815–822. doi:10.1093/jxb/ers373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. doi:10.1016/j.tplants.2013.12.002

  • Allaby RG, Jones MK, Brown TA (1994) DNA in charred wheat grains from the Iron Age hillfort at Danebury, England. Antiquity 68:126–132

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Ambrose MJ (1995) From Near East centre of origin the prized pea migrates throughout world. Diversity 11:118–119

    Google Scholar 

  • Ambrose MJ, Ellis THN (2008) Ballistic seed dispersal and associated seed shadow in wild Pisum germplasm. Pisum Genet 40:5–10

    Google Scholar 

  • Baldev B (1988) Origin, distribution, taxonomy, and morphology. In: Baldev B, Ramanujam S, Jain HK (eds) Pulse crops. Oxford and IBH, New Delhi, pp 3–51

    Google Scholar 

  • Banerjee M, Brown TA (2002) Preservation of nuclear but not chloroplast DNA in archaeological assemblages of charred wheat grains. Anc Biomol 4:59–63. doi:10.1080/1358612021000010659

    Article  CAS  Google Scholar 

  • Ben-Ze´ev N, Zohary D (1973) Species relationship in the genus Pisum L. Israel J Bot 22:73–91

    Google Scholar 

  • Binladen J, Wiuf C, Gilbert TP, Bunce M, Barnett R, Larson G, Greenwood AD, Haile J, Ho SYW, Hansen AJ, Willerslev E (2006) Assessing the fidelity of ancient DNA sequences amplified from nuclear genes. Genetics 172:733–741. doi:10.1534/genetics.105.049718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanova VS, Galieva ER, Kosterin OE (2009) Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl. Theor Appl Genet 118:801–809. doi:10.1007/s00122-008-0940-y

    Article  CAS  PubMed  Google Scholar 

  • Bogdanova VS, Galieva ER, Kosterin OE (2012) Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.). Theor Appl Genet 124:1503–1512. doi:10.1007/s00122-012-1804-z

    Article  CAS  PubMed  Google Scholar 

  • Bojňanský V, Fargašová A (2007) Atlas of seeds and fruits of central and East-European Flora: the Carpathian Mountains region. Springer, Dordrecht

    Google Scholar 

  • Borojević K (2006) Terra and Silva in the Pannonian plain. Opovo agro-gathering in the late neolithic. Archaeopress, Oxford

    Google Scholar 

  • Chimwamurombe PM, Khulbe RK (2011) Domestication of food legumes. In: Aditya P (ed) Food legumes. CABI. ISBN:9781845937669

  • De Candolle A (1884) The origin of cutlivated plants. London, K. Paul, Trench

  • Doyle JJ, Doyle JL (1987) Rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Elbaum R, Melamed-Bassudo C, Boareto E, Galili E, Lev-Yadun S, Levy AA, Weiner S (2006) Ancient olive DNA in pits: preservation, amplification and sequence analysis. J Archeol Sci 33:77–88. doi:10.1016/j.jas.2005.06.011

    Article  Google Scholar 

  • Ellis THN (2011) Pisum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 237–248

    Chapter  Google Scholar 

  • Erskine W (1985) Selection for pod retention and pod dehiscence in lentils. Euphytica 34:105–112. doi:10.1007/BF00022869

    Article  Google Scholar 

  • Fairbairn A, Asouti E, Near J, Martinoli D (2002) Macro-botanical evidence for plant use at Neolithic Çatalhöyük south-central Anatolia, Turkey. Veget Hist Archaeobot 11:41–54. doi:10.1007/s003340200005

    Article  Google Scholar 

  • Fairbairn A, Near J, Martinoli D (2005) Macrobotanical investigations of the north, south and KOPAL areas at Çatalhöyük. In: Hodder I (ed) Inhabiting Çatalhöyük: reports from the 1995–1999 seasons. Cambridge/Ankara: McDonald Institute for Archaeological Research, Cambridge, pp 137–201

  • Forbes I, Wells HD (1968) Hard and soft seededness in Blue Lupine, Lupinus angustifolius L.: inheritance and phenotype classification. Crop Sci 8:195–197. doi:10.2135/cropsci1968.0011183X000800020018x

    Article  Google Scholar 

  • Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544. doi:10.1016/j.tree.2005.07.005

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sci 41:95–98

    CAS  Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. [The domestication syndrome]. Kulturpflanze 32:11–34

    Article  Google Scholar 

  • Hancock JF (2012) Plant evolution and origin of species, 3rd edn. CABI, Wallingford

    Book  Google Scholar 

  • Helbaek H (1964) First impressions of the Çatal Hüyük plant husbandry. Anatol Stud 14:121–123

    Article  Google Scholar 

  • Helbaek H (1970) The plant husbandry of Haçilar. In: Mellaart J (ed) Excavations at Haçilar. Edinburgh University Press, Edinburgh, pp 189–244

    Google Scholar 

  • Hellens RP, Moreau C, Lin-Wang K, Schwinn KE (2010) Identification of Mendel’s white flower character. PLoS One 5:e13230. doi:10.1371/journal.pone.0013230

    Article  PubMed Central  PubMed  Google Scholar 

  • Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284. doi:10.1038/312282a0

    Article  CAS  PubMed  Google Scholar 

  • Ho SY, Heupnik TH, Rambaut A, Shapiro B (2007) Bayesian estimation of sequence damage in ancient DNA. Mol Biol Evol 24:1416–1422. doi:10.1093/molbev/msm113

    Article  CAS  PubMed  Google Scholar 

  • Hopf M (1986) Archaeological evidence of the spread and use of some members of the Leguminosae family. In: Barigozzi C (ed) The original and domestication of cultivated plants. Oxford, Elsevier, pp 35–60

  • Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44. doi:10.1186/1471-2148-10-44

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones M, Brown T (2000) Agricultural origins: the evidence of modern and ancient DNA. Holocene 10:769–776. doi:10.1191/09596830095024

    Article  Google Scholar 

  • Jovanović Ž, Stanisavljević N, Nikolić A, Medović A, Mikić A, Radović S, Đorđević V (2010) Pisum and Ervilia Tetovac—made in Early Iron Age Leskovac. Part two: extraction of the ancient DNA from CHARRED SEEDS FROM the site of Hissar in South Serbia. Ratar Povrt 48:227–232

  • Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209. doi:10.3732/ajb.92.7.1199

    Article  CAS  PubMed  Google Scholar 

  • Kislev ME, Bar-Yosef O (1988) The legumes: the earliest domesticated plants in the Near East? Curr Anthropol 29:175–179

    Article  Google Scholar 

  • Konishi S, Izawa T, Lin S-Y, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396. doi:10.1126/science.1126410

    Article  CAS  PubMed  Google Scholar 

  • Kosterin OE, Bogdanova VS (2008) Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genet Res Crop Evol 55:735–755. doi:10.1007/s10722-007-9281-y

    Article  CAS  Google Scholar 

  • Kluyver TA, Charles M, Jones G, Rees M, Osborne CP (2013) Did greater burial depth increase the seed size of domesticated legumes? J Exp Bot doi: 10.1093/jxb/ert304

  • Kroll H (1983) Kastanas. Ausgrabungen in einem Siedlungshügel der Bronze- und Eisenzeit Makedoniens 1975–1979. Die Pflanzenfunde. Verlag Volker Spiess, Berlin

  • Kroll H (1991) Southeast Europe. In: van Zeist, Wasylikowa K, Behre KE (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 161–177

  • Ladizinsky G (1979) The genetics of several morphological traits in lentil. J Hered 70:135–137

    Google Scholar 

  • Ladizinsky G (1985) The genetics of hard seed coat in the genus Lens. Euphytica 34:539–543. doi:10.1007/BF00022952

    Article  Google Scholar 

  • Ladizinsky G (1987) Pulse domestication before cultivation. Econ Bot 41:60–65. doi:10.1007/BF02859349

    Article  Google Scholar 

  • Ladizinsky G (1998) Plant evolution under domestication. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Lenser T, Theißen G (2013) Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci 18:704–714. doi:10.1016/j.tplants.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  • Li J, Fu C, Lei G (2011) Biogeographical consequences of Cenozoic tectonic events within East Asian margins: a case study of Hynobius biogeography. PLoS One 6:1–10. doi:10.1371/journal.pone.0021506

    Google Scholar 

  • Makasheva RKH (1979) Flora of cultivated plants IV, grain legumes 1, pea. Kolos, St. Petersburg

    Google Scholar 

  • Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 181–190

    Chapter  Google Scholar 

  • Medović A (2005) Plant husbandry of fortified settlement Hisar near Leskovac southern Serbia (ca. 1350–1000 bc). Leskov Zb 45:201–209 (Serbian with English summary)

  • Medović A (2012) Late Bronze Age plant economy at the Early Iron Age hill fort settlement Hissar? Rad Muz Vojv 54:105–118

    Google Scholar 

  • Medović A, Mikić A, Ćupina B, Jovanović Ž, Radović S, Nikolić A, Stanisavljević N (2011) Pisum and Ervilia Tetovac: made in Early Iron Age Leskovac. Part one. Two charred pulse crop storages of the fortified hill fort settlement Hissar in Leskovac, south Serbia. Ratar Povrt 48:219–226

  • Mikić A (2012) Origin of the words denoting some of the most ancient Old World pulse crops and their diversity in modern European languages. PLoS One 7:e44512. doi:10.1371/journal.pone.0044512

    Article  PubMed Central  PubMed  Google Scholar 

  • Mikić A, Smýkal P, Kenicer G et al (2013) The bicentenary of the research on ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Bot J Linn Soc 172:524–531. doi:10.1111/boj.12060

    Article  Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109:195–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmer S, Moore JD, Clapham AJ, Rose P, Allby RG (2009) Archelogical evidence of ancient nubian barley evolution from six to two-row indicates local adaptation. PLoS One 4:e6301. doi:10.1371/journal.pone.0006301

    Article  PubMed Central  PubMed  Google Scholar 

  • Polans NO, Saar DE (2002) ITS sequence variation in wild species and cultivars of pea. Pisum Genet 34:9–13

    Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848. doi:10.1038/nature07895

    Article  CAS  PubMed  Google Scholar 

  • Sáenz de Miera LE, Ramos J, Pérez de la Vega M (2008) A comparative study of convicilin storage protein gene sequences in species of the tribe Vicieae. Genome 7:511–523. doi:10.1139/G08-036

    Google Scholar 

  • Schaefer H, Hechenleitner P, Santos-Guerra A, de Sequeira MM et al (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol 12:250. doi:10.1186/1471-2148-12-250

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobot 17:233–244. doi:10.1007/s00334-007-0125-7

    Article  Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ, Griga M (2008) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117:413–424. doi:10.1007/s00122-008-0785-4

    Article  PubMed  Google Scholar 

  • Smýkal P, Kenicer G, Flavell AJ, Corander J, Kosterin O, Redden RJ, Ford R, Coyne CJ, Maxted N, Ambrose MJ, Ellis THN (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Res 9:4–18. doi:10.1017/S147926211000033X

    Article  Google Scholar 

  • Smýkal P, Coyne C, Redden R, Maxted N (2013) Peas. In: Singh M, Upadhya H (eds) Genetic and genomic resources of grain legume improvement. Elsevier, The Netherlands

    Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ et al. (2014) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci. doi:10.1080/07352689.2014.897904

  • Stojić M, Pešić J, Jović S (2007) Cultural stratigraphy of archaeological site Hisar near Leskovac. Leskov Zb 47:29–40

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vahdati Nasab H (2010) The assessment of the prehistory of Southwestern Iran report (Hole and Flannery 1967). Int J Hum 17:1–12

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Translated by Chester KS. The Ronald Press Company, New York

  • Weeden NF (2007) Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann Bot 100:1017–1025. doi:10.1093/aob/mcm122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss E, Zohary D (2011) The neolithic Southwest Asian founder crops: their biology and archaeobotany. Curr Anthr 52:S237–S254. doi:10.1086/658367

    Article  Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 12:1608–1610

    Article  Google Scholar 

  • Werker E, Marbach I, Mayer AM (1979) Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Ann Bot 43:765–771

    CAS  Google Scholar 

  • Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veg Hist Archaeobot 17:313–325. doi:10.1007/s00334-007-0121-y

    Article  Google Scholar 

  • Zlatković B, Mikić A, Smýkal P (2010) Distribution and new records of Pisum sativum subsp. elatius in Serbia. Pisum Genet 42:15–18

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was supported by the projects 173005, 173030, 31016 and 31024 of the Ministry of Education and Science of the Republic of Serbia, and SEELEGUMES-168 within the EU programme SEE-ERA.NET. P.S. acknowledges funding from Grant Agency of Palacký University in Olomouc, IGA PrF-2013-003. The authors cordially thank Noel Ellis, Gérard Duc for useful suggestions, Milorad Stojić for providing archeobotanical material and Clarice Coyne for manuscript style improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Smýkal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10722_2014_128_MOESM1_ESM.rtf

Supplementary material 1 Complete alignments of respective cpDNA fragments with indicated variable polymorphic sites. A) trnSG intergenic spacer alignment with underlined primer sequences, dash indicates gap of 289bp, B) trnK and matK sequences alignment with indicated gap of 420bp, C) rbcL sequences alignment (RTF 97 kb)

10722_2014_128_MOESM2_ESM.docx

Supplementary material 2 Amplification success in each of two extractions indicated for respective cpDNA regions, ordered by increasing length from 128 to 599 bp fragments (symbolized by black triangle above). Numbers indicate number of the successful out of all performed PCR amplifications. Numbers by markers indicate the respective fragment length. Light grey indicate amplification success less than 50% and darker grey failure (0%) amplification (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smýkal, P., Jovanović, Ž., Stanisavljević, N. et al. A comparative study of ancient DNA isolated from charred pea (Pisum sativum L.) seeds from an Early Iron Age settlement in southeast Serbia: inference for pea domestication. Genet Resour Crop Evol 61, 1533–1544 (2014). https://doi.org/10.1007/s10722-014-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0128-z

Keywords

Navigation