Skip to main content
Log in

New approach to prepare fluorogenic branched dextrins for assaying glycogen debranching enzyme

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycogen debranching enzyme (GDE), together with glycogen phosphorylase (GP), is responsible for the complete degradation of glycogen. GDE has distinct catalytic sites for 4-α-glucanotransferase and amylo-α-1,6-glucosidase. For the GDE sensitive assay, we previously developed the GP limit fluorogenic branched dextrin Glcα1–4Glcα1–4Glcα1–4Glcα1–4(Glcα1–4Glcα1–4Glcα1–4Glcα1–6)Glcα1–4Glcα1–4Glcα1–4GlcPA (B4/84, where Glc = d-glucose and GlcPA = 1-deoxy-1-[(2-pyridyl)amino]-d-glucitol). However, B4/84 is not widely available because of difficulties in its chemical synthesis and positional-isomer separation (0.33% yield by α-1,6-coupling of maltotetraose with Glc7-GlcPA). In this study, we attempted to develop an efficient method for the preparation of Glcα1–4Glcα1–4Glcα1–4Glcα1–4(Glcα1–4Glcα1–4Glcα1–4Glcα1–6)Glcα1–4Glcα1–4GlcPA (B3/74), which was designed to have the minimum essential dextrin structure for GDE. First, Glcα1–6Glcα1–4Glcα1–4GlcPA (B3/31) was prepared from commercially available Glcα1–6Glcα1–4Glcα1–4Glc. Using α-cyclodextrin as a donor substrate, cyclodextrin glucanotransferase elongated both the main and side branches on B3/31, while all the glycosidic bonds in B3/31 were left intact. After exhaustive digestion with GP, B3/74 was obtained from B3/31 with 16% yield, a value that is 48-fold greater than that previously reported for B4/84. GDE 4-α-glucanotransferase exhibited high activity toward both B3/74 and B4/84. In addition, we studied the efficient conversion of B3/74 into Glcα1–4Glcα1–4Glcα1–4Glcα1–4(Glcα1–6)Glcα1–4Glcα1–4GlcPA (B3/71), which has the best dextrin structure for the GDE amylo-α-1,6-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supported the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cori, C.F., Cori, G.T.: Carbohydrate metabolism. Annu. Rev. Biochem. 10, 151–180 (1941)

    Article  CAS  Google Scholar 

  2. Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., Tagliabracci, V.S.: Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441, 763–787 (2012)

    Article  CAS  Google Scholar 

  3. Melendez, R., Melendez-Hevia, E., Canela, E.I.: The fractal structure of glycogen: a clever solution to optimize cell metabolism. Biophys. J. 77, 1327–1332 (1999)

    Article  CAS  Google Scholar 

  4. Titani, K., Koide, A., Hermann, J., Ericsson, L.H., Kumar, S., Wade, R.D., Walsh, K.A., Neurath, H., Fisher, E.H.: Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc. Natl. Acad. Sci. U. S. A. 74, 4762–4766 (1977)

    Article  CAS  Google Scholar 

  5. Tagaya, M., Fukui, T.: Catalytic reaction of glycogen phosphorylase reconstituted with a coenzyme-substrate conjugate. J. Biol. Chem. 259, 4860–4865 (1984)

    CAS  PubMed  Google Scholar 

  6. Gordon, R.B., Brown, D.H., Brown, B.I.: Preparation and properties of the glycogen-debranching enzyme from rabbit liver. Biochim. Biophys. Acta. 289, 97–107 (1972)

    Article  CAS  Google Scholar 

  7. Nakayama, A., Yamamoto, K., Tabata, S.: Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J. Biol. Chem. 276, 28824–28828 (2001)

    Article  CAS  Google Scholar 

  8. Zhai, L., Feng, L., Xia, L., Yin, H., Xiang, S.: Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat. Commun. 7, 11229 (2016)

    Article  CAS  Google Scholar 

  9. Watanabe, Y., Makino, Y., Omichi, K.: Fluorogenic substrates of glycogen debranching enzyme for assaying debranching activity. Anal. Biochem. 340, 279–286 (2005)

    Article  CAS  Google Scholar 

  10. Yamamoto, E., Makino, Y., Omichi, K.: Active site mapping of amylo-α-1,6-glucosidase in porcine liver glycogen debranching enzyme using fluorogenic 6-O-α-glucosyl-maltooligosaccharides. J. Biochem. 141, 627–634 (2007)

  11. Watanabe, Y., Makino, Y., Omichi, K.: Activation of 4-α-glucanotransferase activity of porcine liver glycogen debranching enzyme with cyclodextrins. J. Biochem. 140, 135–140 (2006)

    Article  CAS  Google Scholar 

  12. Yamamoto, E., Watanabe, Y., Makino, Y., Omichi, K.: Inspection of the activator binding site for 4-α-glucanotransferase in porcine liver glycogen debranching enzyme with fluorogenic dextrins. J. Biochem. 145, 585–590 (2009)

    Article  CAS  Google Scholar 

  13. Shen, J.J., Chen, Y.T.: Molecular characterization of glycogen storage disease type III. Curr. Mol. Med. 2, 167–175 (2002)

    Article  CAS  Google Scholar 

  14. Endo, Y., Horinishi, A., Vorgerd, M., Aoyama, Y., Ebara, T., Murase, T., Odawara, M., Podskarbi, T., Shin, Y.S., Okubo, M.: Molecular analysis of the AGL gene: heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey. J. Hum. Genet. 51, 958–963 (2006)

    Article  CAS  Google Scholar 

  15. Sentner, C.P., Hoogeveen, I.J., Weinstein, D.A., Santer, R., Murphy, E., McKiernan, P.J., Steuerwald, U., Beauchamp, N.J., Taybert, J., Laforêt, P., Petit, F.M., Hubert, A., Labrune, P., Smit, G.P.A, Derks, T.G.J.: Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis. 39, 697–704 (2016)

  16. Cheng, A., Zhang, M., Okubo, M., Omichi, K., Saltiel, A.R.: Distinct mutations in the glycogen debranching enzyme found in glycogen storage disease type III lead to impairment in diverse cellular functions. Hum. Mol. Genet. 18, 2045–2052 (2009)

    Article  CAS  Google Scholar 

  17. Makino, Y., Omichi, K.: Acceptor specificity of 4-α-glucanotransferases of mammalian glycogen debranching enzymes. J. Biochem. 139, 535–541 (2006)

    Article  CAS  Google Scholar 

  18. Watanabe, Y., Makino, Y., Omichi, K.: Donor substrate specificity of 4-α-glucanotransferase of porcine liver glycogen debranching enzyme and complementary action to glycogen phosphorylase on debranching. J. Biochem. 143, 435–440 (2008)

    Article  CAS  Google Scholar 

  19. Kuraya, N., Hase, S.: Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. J. Biochem. 112, 122–126 (1992)

    Article  CAS  Google Scholar 

  20. Nakamura, M., Makino, Y., Takagi, C., Yamagaki, T., Sato, M.: Probing the catalytic site of rabbit muscle glycogen phosphorylase using a series of specifically modified maltohexaose derivatives. Glycoconj. J. 34, 563–574 (2017)

    Article  CAS  Google Scholar 

  21. Hii, S.L., Tan, J.S., Ling, C.L., Ariff, A.B.: Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 921362(2012), 1–14 (2012)

    Article  Google Scholar 

  22. Makino, Y., Yonezaki, K., Omichi, K.: Analysis of fluorogenic smith degradation products of 7-(1,3-disulfonaphtyl)amino-disaccharides for linkage position analysis of carbohydrates. J. Biochem. 132, 961–966 (2002)

    Article  CAS  Google Scholar 

  23. Liu, Z., Ma, S.: Recent advances in synthetic α-glucosidase inhibitors. Chem. Med. Chem. 12, 819–829 (2017)

    Article  CAS  Google Scholar 

  24. Vetter, D., Thorn, W., Brunner, H., König, W.A.: Directed enzymatic synthesis of linear and branched gluco-oligosaccharides, using cyclodextrin-glucanosyltransferase. Carbohydr. Res. 223, 61–69 (1992)

    Article  CAS  Google Scholar 

  25. Leemhuis, H., Kelly, R.M., Dijkhuizen, L.: Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl. Microbiol. Biotechnol. 85, 823–835 (2010)

    Article  CAS  Google Scholar 

  26. Summer, R., French, D.: Action of β-amylase on branched oligosaccharides. J. Biol. Chem. 222, 469–477 (1956)

    CAS  PubMed  Google Scholar 

  27. Hers, H.G., Verhue, W., Van Hoof, F.: The determination of amylo-1,6-glucosidase. Eur. J. Biochem. 2, 257–264 (1967)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Takaaki Miyaji and Ms. Asako Kawakami from the Department of Genomics & Proteomics, Okayama University for performing the MALDI-TOF MS analysis of the fluorogenic branched dextrins. We would also like to thank Amano Enzyme (Nagoya, Aichi, Japan) for providing CGTase (trade name, Contizyme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Makino.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

This work does not include any studies with human participants or animals.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaguchi, M., Makino, Y. & Matsubara, H. New approach to prepare fluorogenic branched dextrins for assaying glycogen debranching enzyme. Glycoconj J 37, 667–679 (2020). https://doi.org/10.1007/s10719-020-09955-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09955-7

Keywords

Navigation