Skip to main content

Advertisement

Log in

Mucins as anti-cancer targets: perspectives of the glycobiologist

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Mucins are highly O-glycosylated glycoproteins that carry a heterogenous variety of O-glycan structures. Tumor cells tend to overexpress specific mucins, such as the cell surface mucins MUC1 and MUC4 that are engaged in signaling and cell growth, and exhibit abnormal glycosylation. In particular, the Tn and T antigens and their sialylated forms are common in cancer mucins. We review herein methods chosen to use cancer-associated glycans and mucins as targets for the design of anti-cancer immunotherapies. Mucin peptides from the glycosylated and transmembrane domains have been combined with immune-stimulating adjuvants in a wide variety of approaches to produce anti-tumor antibodies and vaccines. These mucin conjugates have been tested on cancer cells in vitro and in mice with significant successes in stimulating anti-tumor responses. The clinical trials in humans, however, have shown limited success in extending survival. It seems critical that the individual-specific epitope expression of cancer mucins is considered in future therapies to result in lasting anti-tumor responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brockhausen, I., Gao, Y.: In: Yurevics, E. (ed.) Structural Glycobiology: Applications in Cancer Research. Chapter 8, pp. 177–213. CRC Press, Taylor & Francis Group, Abingdon (2012)

    Google Scholar 

  2. Tati, S., Fisk, J.C., Abdullah, J., et al.: Humanization of JAA-F11, a highly specific anti-Thomsen-Friedenreich Pancarcinoma antibody and InVitro efficacy analysis. Neoplasia. 19, 716–733 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garrett, W.S.: Cancer and the microbiota. Science. 348, 80–86 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Redelman-Sidi, G., Glickman, M.S., Bochner, B.H.: The mechanism of action of BCG therapy for bladder cancer--a current perspective. Nat. Rev. Urol. 11, 153–162 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Lima, L., Severino, P.F., Silva, M., Miranda, A., Tavares, A., Pereira, S., Fernandes, E., Cruz, R., Amaro, T., Reis, C.A., Dall'Olio, F., Amado, F., Videira, P.A., Santos, L., Ferreira, J.A.: Response of high-risk of recurrence/progression bladder tumours expressing sialyl-Tn and sialyl-6-T to BCG immunotherapy. Br. J. Cancer. 109, 2106–2114 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beatson, R.E., Taylor-Papadimitriou, J., Burchell, J.M.: MUC1 immunotherapy. Immunotherapy. 2, 305–327 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia, R., Gautam, S.K., Cannon, A., Thompson, C., Hall, B.R., Aithal, A., Banerjee, K., Jain, M., Solheim, J.C., Kumar, S., Batra, S.K.: Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 38, 223–236 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peng, C., Ouyang, Y., Lu, N., Li, N.: The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances. Front. Immunol. 11, 1387 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barrera, M.J., Aguilera, S., Veerman, E., Quest, A.F., Diaz-Jimenez, D., Urzua, U., et al.: Salivary mucins induce a toll-like receptor 4-mediated pro-inflammatory response in human submandibular salivary cells: are mucins involved in Sjogren’s syndrome? Rheumatology (Oxford). 54, 1518–1527 (2015)

    Article  CAS  Google Scholar 

  10. Yang, X., Yip, J., Anastassiades, T., Harrison, M., Brockhausen, I.: The action of TNFalpha and TGFbeta include specific alterations of the glycosylation of bovine and human chondrocytes. Biochim. Biophys. Acta. 1773, 264–272 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Apostolopoulos, V., McKenzie, I.F.C.: Cellular Mucins: targets for immunotherapy. Crit. Rev. Immunol. 37, 421–437 (2017)

    Article  PubMed  Google Scholar 

  12. Dobrochaeva, K., Khasbiullina, N., Shilova, N., Antipova, N., Obukhova, P., Ovchinnikova, T., Galanina, O., Blixt, O., Kunz, H., Filatov, A., Knirel, Y., LePendu, J., Khaidukov, S., Bovin, N.: Specificity of human natural antibodies referred to as anti-Tn. Mol. Immunol. 120, 74–82 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. Von Mensdorff-Pouilly, S., Gourevitch, M.M., Kenemans, P., et al.: Humoral immune response to polymorphic epithelial mucin (MUC-1) in patients with benign and malignant breast tumours. Eur. J. Cancer. 32A, 1325–1331 (1996)

    Article  Google Scholar 

  14. Von Mensdorff-Pouilly, S., Verstraeten, A.A., Kenemans, P., et al.: Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol. 18, 574–583 (2000)

    Article  Google Scholar 

  15. Kurtenkov, O., Klaamas, K., Mensdorff-Pouilly, S., Miljukhina, L., Shljapnikova, L., Chuzmarov, V.: Humoral immune response to MUC1 and to the Thomsen–Friedenreich (TF) glycotope in patients with gastric cancer: relation to survival. Acta Oncol. 46, 316–323 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Pichinuk, E., Chalik, M., Benhar, I., Ginat-Koton, R., Ziv, R., Smorodinsky, N.I., Haran, G., Garbar, C., Bensussan, A., Meeker, A., Guillaume, T., Rubinstein, D.B., Wreschner, D.H.: In vivo anti-MUC1+ tumor activity and sequences of high-affinity anti-MUC1-SEA antibodies. Cancer Immunol. Immunother. 69, 1337–1352 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Taylor-Papadimitriou, J., Burchell, J.M., Graham, R., Beatson, R.: Latest developments in MUC1 immunotherapy. Biochem. Soc. Trans. 46, 659–668 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh, P.K., Hollingsworth, M.A.: Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16, 467–476 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Kharbanda, A., Rajabi, H., Jin, C., Tchaicha, J., Kikuchi, E., Wong, K.K., Kufe, D.: Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells. Clin. Cancer Res. 20, 5423–5434 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raina, D., Agarwal, P., Lee, J., Bharti, A., McKnight, C.J., Sharma, P., Kharbanda, S., Kufe, D.: Characterization of the MUC1-C cytoplasmic domain as a cancer target. PLoS One. 10, e0135156 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hasegawa, M., Sinha, R.K., Kumar, M., Alam, M., Yin, L., Raina, D., Kharbanda, A., Panchamoorthy, G., Gupta, D., Singh, H., Kharbanda, S., Kufe, D.: Intracellular targeting of the oncogenic MUC1-C protein with a novel GO-203 nanoparticle formulation. Clin. Cancer Res. 21, 2338–2347 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hiraki, M., Suzuki, Y., Alam, M., Hinohara, K., Hasegawa, M., Jin, C., Kharbanda, S., Kufe, D.: MUC1-C stabilizes MCL-1 in the oxidative stress response of triple-negative breast cancer cells to BCL-2 inhibitors. Sci. Rep. 6, 6643 (2016)

    Article  Google Scholar 

  23. Gautam, S.K., Kumar, S., Dam, V., Ghersi, D., Jain, M., Batra, S.K.: MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Semin. Immunol. 47, 101391 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu, Y., Zhang, J.J., Peng, Y.P., Liu, X., Xie, K.L., Tang, J., Jiang, K.R., Gao, W.T., Tian, L., Zhang, K., Xu, Z.K., Miao, Y.: NIDO, AMOP and vWD domains of MUC4 play synergic role in MUC4 mediated signaling. Oncotarget. 8(6), 10385–10399 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang, J., Zhu, Y., Xie, K., Zhang, X., Zhi, X., Wang, W., Li, Z., Zhang, Q., Wang, L., Wang, J., Xu, Z.: The role of the AMOP domain in MUC4/Y-promoted tumour angiogenesis and metastasis in pancreatic cancer. J. Exp. Clin. Cancer Res. 35, 91 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xia, P., Choi, A.H., Deng, Z., Yang, Y., Zhao, J., Wang, Y., Hardwidge, P.R., Zhu, G.: Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas. Oncotarget. 8, 14147–14157 (2017)

    Article  PubMed  Google Scholar 

  27. Aithal, A., Rauth, S., Kshirsagar, P., Shah, A., Lakshmanan, I., Junker, W.M., Jain, M., Ponnusamy, M.P., Batra, S.K.: MUC16 as a novel target for cancer therapy. Expert Opin. Ther. Targets. 22, 675–686 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, S., You, L., Dai, M., Zhao, Y.: Mucins in pancreatic cancer: a well-established but promising family for diagnosis, prognosis and therapy. J. Cell. Mol. Med. 24, 10279–10289 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaur, S., Smith, L.M., Patel, A., Menning, M., Watley, D.C., Malik, S.S., Krishn, S.R., Mallya, K., Aithal, A., Sasson, A.R., Johansson, S.L., Jain, M., Singh, S., Guha, S., Are, C., Raimondo, M., Hollingsworth, M.A., Brand, R.E., Batra, S.K.: A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study. Am. J. Gastroenterol. 112, 172–183 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Mereiter, S., Balmaña, M., Campos, D., Gomes, J., Reis, C.A.: Glycosylation in the era of cancer-targeted therapy: where Are we heading? Cancer Cell. 36, 6–16 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. Niv, Y., Ho, S.B., Fass, R., Rokkas, T.: Mucin expression in the esophageal malignant and pre-malignant states: a systematic review and meta-analysis. J. Clin. Gastroenterol. 52, 91–96 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. Terada, T.: An immunohistochemical study of primary signet-ring cell carcinoma of the stomach and colorectum: II. Expression of MUC1, MUC2, MUC5AC, and MUC6 in normal mucosa and in 42 cases. Int. J. Clin. Exp. Pathol. 6, 613–621 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Betge, J., Schneider, N.I., Harbaum, L., Pollheimer, M.J., Lindtner, R.A., Kornprat, P., Ebert, M.P., Langner, C.: MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: expression profiles and clinical significance. Virchows Arch. 469, 255–265 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dalziel, M., Whitehouse, C., McFarlane, I., Brockhausen, I., Gschmeissner, S., Schwientek, T., Clausen, H., Burchell, J.M., Taylor-Papadimitriou, J.: The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J. Biol. Chem. 276, 11007–11015 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. Bai, R., Luan, X., Zhang, Y., Robbe-Masselot, C., Brockhausen, I., Gao, Y.: The expression and functional analysis of the sialyl-T antigen in prostate cancer. Glycoconj. J. 37, 423–433 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Dabelsteen, E.: Cell surface carbohydrates as prognostic markers in human carcinomas. J. Pathol. 179, 358–369 (1996)

    Article  CAS  PubMed  Google Scholar 

  37. de Las Rivas, M., Lira-Navarrete, E., Gerken, T.A., Hurtado-Guerrero, R.: Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol. 56, 87–96 (2019)

    Article  PubMed  Google Scholar 

  38. Bagdonaite, I., Pallesen, E.M., Ye, Z., Vakhrushev, S.Y., Marinova, I.N., Nielsen, M.I., Kramer, S.H., Pedersen, S.F., Joshi, H.J., Bennett, E.P., Dabelsteen, S., Wandall, H.H.: O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep. 21, e48885 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, Y.M., Liu, C.H., Hu, R.H., Huang, M.J., Lee, J.J., Chen, C.H., Huang, J., Lai, H.S., Lee, P.H., Hsu, W.M., Huang, H.C., Huang, M.C.: Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71, 7270–7279 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Taniuchi, K., Cerny, R.L., Tanouchi, A., Kohno, K., Kotani, N., Honke, K., Saibara, T., Hollingsworth, M.A.: Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth. Oncogene. 30, 4843–4854 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Niang, B., Jin, L., Chen, X., Guo, X., Zhang, H., Wu, Q., Padhiar, A.A., Xiao, M., Fang, D., Zhang, J.: GalNAc-T4 putatively modulates the estrogen regulatory network through FOXA1 glycosylation in human breast cancer cells. Mol. Cell. Biochem. 411, 393–402 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. Freire, T., Berois, N., Sóñora, C., Varangot, M., Barrios, E., Osinaga, E.: UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells. Int. J. Cancer. 119, 1383–1388 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Pangeni, R.P., Channathodiyil, P., Huen, D.S., Eagles, L.W., Johal, B.K., Pasha, D., Hadjistephanou, N., Nevell, O., Davies, C.L., Adewumi, A.I., Khanom, H., Samra, I.S., Buzatto, V.C., Chandrasekaran, P., Shinawi, T., Dawson, T.P., Ashton, K.M., Davis, C., Brodbelt, A.R., Jenkinson, M.D., Bièche, I., Latif, F., Darling, J.L., Warr, T.J., Morris, M.R.: The GALNT9, BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain. Clin. Epigenetics. 7, 57 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huanna, T., Tao, Z., Xiangfei, W., Longfei, A., Yuanyuan, X., Jianhua, W., Cuifang, Z., Manjing, J., Wenjing, C., Shaochuan, Q., Feifei, X., Naikang, L., Jinchao, Z., Chen, W.: GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7. Mol. Carcinog. 54, 1159–1171 (2015)

    Article  PubMed  Google Scholar 

  45. Tarp, M.A., Clausen, H.: Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta. 1780, 546–563 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Z., Liu, J., Dong, X., Hu, X., Jiang, Y., Li, L., Du, T., Yang, L., Wen, T., An, G., Feng, G.: Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J. Cell. Mol. Med. 23, 2083–2092 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ju, T., Aryal, R.P., Kudelka, M.R., Wang, Y., Cummings, R.D.: The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14, 63–81 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Julien, S., Adriaenssens, E., Ottenberg, K., Furlan, A., Courtand, G., Vercoutter-Edouart, A.S., Hanisch, F.G., Delannoy, P., Le Bourhis, X.: ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology. 16, 54–64 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U., Schlag, P.M.: Overexpression of sialyltransferase CMP-sialic acid: Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res. 61, 4605–4611 (2001)

    CAS  PubMed  Google Scholar 

  50. Marcos, N.T., Bennett, E.P., Gomes, J., Magalhaes, A., Gomes, C., David, L., Dar, I., Jeanneau, C., DeFrees, S., Krustrup, D., Vogel, L.K., Kure, E.H., Burchell, J., Taylor-Papadimitriou, J., Clausen, H., Mandel, U., Reis, C.A.: ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front. Biosci. (Elite Ed). 3, 1443–1455 (2011)

    PubMed  Google Scholar 

  51. Ogata, S., Koganty, R., Reddish, M., Longenecker, B.M., Chen, A., Perez, C., Itzkowitz, S.H.: Different modes of sialyl-Tn expression during malignant transformation of human colonic mucosa. Glycoconj. J. 15, 29–35 (1998)

    Article  CAS  PubMed  Google Scholar 

  52. Yu, X., Wu, Q., Wang, L., Zhao, Y., Zhang, Q., Meng, Q., Pawan, Wang, S.: Silencing of ST6GalNAc I suppresses the proliferation, migration and invasion of hepatocarcinoma cells through PI3K/AKT/NF-κB pathway. Tumour Biol. 37, 12213–12221 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. Iwai, T., Inaba, N., Naundorf, A., Zhang, Y., Gotoh, M., Iwasaki, H., Kudo, T., Togayachi, A., Ishizuka, Y., Nakanishi, H., Narimatsu, H.: Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277, 12802–12809 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. Vavasseur, F., Yang, J.M., Dole, K., Paulsen, H., Brockhausen, I.: Synthesis of O-glycan core 3: characterization of UDP-GlcNAc: GalNAc-R beta 3-N-acetyl-glucosaminyltransferase activity from colonic mucosal tissues and lack of the activity in human cancer cell lines. Glycobiology. 5, 351–357 (1995)

    Article  CAS  PubMed  Google Scholar 

  55. Iwai, T., Kudo, T., Kawamoto, R., Kubota, T., Togayachi, A., Hiruma, T., Okada, T., Kawamoto, T., Morozumi, K., Narimatsu, H.: Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 102, 4572–4577 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. An, G., Wei, B., Xia, B., McDaniel, J.M., Ju, T., Cummings, R.D., Braun, J., Xia, L.: Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med. 204, 1417–1429 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doi, N., Ino, Y., Angata, K., Shimada, K., Narimatsu, H., Hiraoka, N.: Clinicopathological significance of core 3 O-glycan synthetic enzyme, β1,3-N-acetylglucosaminyltransferase 6 in pancreatic ductal adenocarcinoma. PLoS One. 15, e0242851 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Radhakrishnan, P., Grandgenett, P.M., Mohr, A.M., Bunt, S.K., Yu, F., Chowdhury, S., Hollingsworth, M.A.: Expression of core 3 synthase in human pancreatic cancer cells suppresses tumor growth and metastasis. Int. J. Cancer. 133, 2824–2833 (2013)

    CAS  PubMed  Google Scholar 

  59. Gao, Y., Chachadi, V.B., Cheng, P.W., Brockhausen, I.: Glycosylation potential of human prostate cancer cell lines. Glycoconj. J. 29, 525–537 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Picco, G., Julien, S., Brockhausen, I., Beatson, R., Antonopoulos, A., Haslam, S., Mandel, U., Dell, A., Pinder, S., Taylor-Papadimitriou, J., Burchell, J.: Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology. 20, 1241–1250 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burchell, J., Poulsom, R., Hanby, A., Whitehouse, C., Cooper, L., Clausen, H., Miles, D., Taylor-Papadimitriou, J.: An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology. 9, 1307–1311 (1999)

    Article  CAS  PubMed  Google Scholar 

  62. Brockhausen, I., Matta, K.L., Orr, J., Schachter, H.: Mucin synthesis. UDP-GlcNAc:GalNAc-R beta 3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAc beta 1–3GalNAc-R (GlcNAc to GalNAc) beta 6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry. 24, 1866–1874 (1985)

    Article  CAS  PubMed  Google Scholar 

  63. Yang, J.M., Byrd, J.C., Siddiki, B.B., Chung, Y.S., Okuno, M., Sowa, M., Kim, Y.S., Matta, K.L., Brockhausen, I.: Alterations of O-glycan biosynthesis in human colon cancer tissues. Glycobiology. 4, 873–884 (1994)

    Article  CAS  PubMed  Google Scholar 

  64. Beum, P.V., Basma, H., Bastola, D.R., Cheng, P.W.: Mucin biosynthesis: upregulation of core 2 beta 1,6 N-acetylglucosaminyltransferase by retinoic acid and Th2 cytokines in a human airway epithelial cell line. Am. J. Phys. Lung Cell. Mol. Phys. 288, L116–L124 (2005)

    CAS  Google Scholar 

  65. Huang, M.C., Chen, H.Y., Huang, H.C., Huang, J., Liang, J.T., Shen, T.L., Lin, N.Y., Ho, C.C., Cho, I.M., Hsu, S.M.: C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene. 25, 3267–3276 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. Ishizone, S., Yamauchi, K., Kawas, S., Suzuki, T., Shimizu, F., Harada, O., Sugiyama, A., Miyagawa, S., Fukuda, M., Nakayama, J.: Clinical utility of quantitative RT-PCR targeted to alpha1,4-N-acetylglucosaminyltransferase mRNA for detection of pancreatic cancer. Cancer Sci. 97, 119–126 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Martínez-Sáez, N., Peregrina, J.M., Corzana, F.: Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem. Soc. Rev. 46, 7154–7175 (2017)

    Article  PubMed  Google Scholar 

  68. Rhinehardt, K.L., Srinivas, G., Mohan, R.V.: Molecular dynamics simulation analysis of anti-MUC1 Aptamer and Mucin 1 peptide binding. J. Phys. Chem. B. 119, 6571–6583 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Barnett, C.B., Senapathi, T., Naidoo, K.J.: Comparative ligand structural analytics illustrated on variably glycosylated MUC1 antigen-antibody binding. Beilstein J. Org. Chem. 16, 2540–2550 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Movahedin, M., Brooks, T.M., Supekar, N.T., Gokanapudi, N., Boons, G.J., Brooks, C.L.: Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology. 27, 677–687 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, Z.H., Shi, L., Ma, J.W., Sun, Z.Y., Cai, H., Chen, Y.X., Zhao, Y.F., Li, Y.M.: A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J. Am. Chem. Soc. 134, 8730–8733 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Carmicheal, J., Atri, P., Sharma, S., Kumar, S., Chirravuri Venkata, R., Kulkarni, P., Salgia, R., Ghersi, D., Kaur, S., Batra, S.K.: Presence and structure-activity relationship of intrinsically disordered regions across mucins. FASEB J. 34, 1939–1957 (2020)

    Article  CAS  PubMed  Google Scholar 

  73. Gaidzik, N., Westerlind, U., Kunz, H.: The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem. Soc. Rev. 42, 4421–4442 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Wilson, R.M., Danishefsky, S.J.: A vision for vaccines built from fully synthetic tumor-associated antigens: from the laboratory to the clinic. J. Am. Chem. Soc. 135, 14462–14472 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Feng, D., Shaikh, A.S., Wang, F.: Recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem. Biol. 11, 850–863 (2016)

    Article  CAS  PubMed  Google Scholar 

  76. Slovin, S.F., Ragupathi, G., Fernandez, C., Diani, M., Jefferson, M.P., Wilton, A., Kelly, W.K., Morris, M., Solit, D., Clausen, H., Livingston, P., Scher, H.I.: A polyvalent vaccine for high-risk prostate patients: ‘are more antigens better?’. Cancer Immunol. Immunother. 56, 1921–1930 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. Stergiou, N., Gaidzik, N., Heimes, A.S., Dietzen, S., Besenius, P., Jäkel, J., Brenner, W., Schmidt, M., Kunz, H., Schmitt, E.: Reduced breast tumor growth after immunization with a tumor-restricted MUC1 Glycopeptide conjugated to tetanus toxoid. Cancer Immunol. Res. 7, 113–122 (2019)

    Article  CAS  PubMed  Google Scholar 

  78. Miles, D., Roché, H., Martin, M., Perren, T.J., Cameron, D.A., Glaspy, J., Dodwell, D., Parker, J., Mayordomo, J., Tres, A., Murray, J.L., Ibrahim, N.K.: Theratope® study group. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 16, 1092–1100 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Corzana, F., Busto, J.H., Marcelo, F., de Luis, M.G., Asensio, J.L., Martín-Santamaría, S., Sáenz, Y., Torres, C., Jiménez-Barbero, J., Avenoza, A., Peregrina, J.M.: Rational design of a Tn antigen mimic. Chem. Commun. (Camb.). 47, 5319–5321 (2011)

    Article  CAS  Google Scholar 

  80. Kaiser, A., Gaidzik, N., Westerlind, U., Kowalczyk, D., Hobel, A., Schmitt, E., Kunz, H.: A synthetic vaccine consisting of a tumor-associated sialyl-T(N)-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew. Chem. Int. Ed. Eng. 48, 7551–7555 (2009)

    Article  CAS  Google Scholar 

  81. Westerlind, U., Kunz, H.: Synthetic vaccines from tumor-associated glycopeptide antigens. Chimia (Aarau). 65, 30–34 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. Hoffmann-Röder, A., Kaiser, A., Wagner, S., Gaidzik, N., Kowalczyk, D., Westerlind, U., Gerlitzki, B., Schmitt, E., Kunz, H.: Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew. Chem. Int. Ed. Eng. 49, 8498–8503 (2010)

    Article  Google Scholar 

  83. Fiedler, W., DeDosso, S., Cresta, S., Weidmann, J., Tessari, A., Salzberg, M., Dietrich, B., Baumeister, H., Goletz, S., Gianni, L., Sessa, C.: A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas. Eur. J. Cancer. 63, 55–63 (2016)

    Article  CAS  PubMed  Google Scholar 

  84. Bose, M., Mukherjee, P.: Potential of anti-MUC1 antibodies as a targeted therapy for gastrointestinal cancers. Vaccines (Basel). 8, 659 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  85. Sharma, P., Allison, J.P.: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 161, 205–214 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shayan, G., Srivastava, R., Li, J., Schmitt, N., Kane, L.P., Ferris, R.L.: Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology. 6, e1261779 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kondo, H., Hazama, S., Kawaoka, T., Yoshino, S., Yoshida, S., Tokuno, K., Takashima, M., Ueno, T., Hinoda, Y., Oka, M.: Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res. 28(1B), 379–387 (2008)

    CAS  PubMed  Google Scholar 

  88. Butts, C., Socinski, M.A., Mitchell, P.L., Thatcher, N., Havel, L., Krzakowski, M., Nawrocki, S., Ciuleanu, T.E., Bosquée, L., Trigo, J.M., Spira, A., Tremblay, L., Nyman, J., Ramlau, R., Wickart-Johansson, G., Ellis, P., Gladkov, O., Pereira, J.R., Eberhardt, W.E., Helwig, C., Schröder, A., Shepherd, F.A., START trial team: Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 59–68 (2014)

    Article  CAS  PubMed  Google Scholar 

  89. Singer, C.F., Pfeiler, G., Hubalek, M., et al.: Austrian Breast & Colorectal Cancer Study Group. Efficacy and safety of the therapeutic cancer vaccine tecemotide (L-BLP25) in early breast cancer: results from a prospective, randomised, neoadjuvant phase II study (ABCSG 34). Eur. J. Cancer. 132, 43–52 (2020)

    Article  CAS  PubMed  Google Scholar 

  90. Oudard, S., Rixe, O., Beuselinck, B., Linassier, C., Banu, E., Machiels, J.P., Baudard, M., Ringeisen, F., Velu, T., Lefrere-Belda, M.A., Limacher, J.M., Fridman, W.H., Azizi, M., Acres, B., Tartour, E.: A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol. Immunother. 60, 261–271 (2011)

    Article  CAS  PubMed  Google Scholar 

  91. Scheid, E., Major, P., Bergeron, A., Finn, O.J., Salter, R.D., Eady, R., Yassine-Diab, B., Favre, D., Peretz, Y., Landry, C., Hotte, S., Mukherjee, S.D., Dekaban, G.A., Fink, C., Foster, P.J., Gaudet, J., Gariepy, J., Sekaly, R.P., Lacombe, L., Fradet, Y., Foley, R.: Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol. Res. 4, 881–892 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holmberg, L.A., Sandmaier, B.M.: Theratope vaccine (STn-KLH). Expert. Opin. Biol. Ther. 1, 881–891 (2001)

    Article  CAS  PubMed  Google Scholar 

  93. Carmon, L., Avivi, I., Kovjazin, R., Zuckerman, T., Dray, L., Gatt, M.E., Or, R., Shapira, M.Y.: Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients. Br. J. Haematol. 169, 44–56 (2015)

    Article  CAS  PubMed  Google Scholar 

  94. Shindo, Y., Hazama, S., Maeda, Y., Matsui, H., Iida, M., Suzuki, N., Yoshimura, K., Ueno, T., Yoshino, S., Sakai, K., Suehiro, Y., Yamasaki, T., Hinoda, Y., Oka, M.: Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J. Transl. Med. 12, 175 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  95. Posey Jr., A.D., Schwab, R.D., Boesteanu, A.C., Steentoft, C., Mandel, U., Engels, B., Stone, J.D., Madsen, T.D., Schreiber, K., Haines, K.M., Cogdill, A.P., Chen, T.J., Song, D., Scholler, J., Kranz, D.M., Feldman, M.D., Young, R., Keith, B., Schreiber, H., Clausen, H., Johnson, L.A., June, C.H.: Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane Mucin MUC1 control adenocarcinoma. Immunity. 44, 1444–1454 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sasidharan Nair, V., Toor, S.M., Taha, R.Z., Ahmed, A.A., Kurer, M.A., Murshed, K., Soofi, M.E., Ouararhni, K., Alajez, N.M., Abu Nada, M., Elkord, E.: Transcriptomic profiling of tumor-infiltrating CD4+TIM-3+ T cells reveals their suppressive, exhausted, and metastatic characteristics in colorectal cancer patients. Vaccines (Basel). 8, 71 (2020)

    Article  PubMed Central  Google Scholar 

  97. Baghdadi, M., Nagao, H., Yoshiyama, H., Akiba, H., Yagita, H., Dosaka-Akita, H., Jinushi, M.: Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol. Immunother. 62, 629–637 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. Rashidijahanabad, Z., Huang, X.: Recent advances in tumor associated carbohydrate antigen based chimeric antigen receptor T cells and bispecific antibodies for anti-cancer immunotherapy. Semin. Immunol. 47, 101390 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  99. Katayose, Y., Kudo, T., Suzuki, M., Shinoda, M., Saijyo, S., Sakurai, N., Saeki, H., Fukuhara, K., Imai, K., Matsuno, S.: MUC1-specific targeting immunotherapy with bispecific antibodies: inhibition of xenografted human bile duct carcinoma growth. Cancer Res. 56, 4205–4212 (1996)

    CAS  PubMed  Google Scholar 

  100. Johnen, H., Kulbe, H., Pecher, G.: Long-term tumor growth suppression in mice immunized with naked DNA of the human tumor antigen mucin (MUC1). Cancer Immunol. Immunother. 50, 356–360 (2001)

    Article  CAS  PubMed  Google Scholar 

  101. Wei, J., Gao, W., Wu, J., Meng, K., Zhang, J., Chen, J., Miao, Y.: Dendritic cells expressing a combined PADRE/MUC4-derived polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Cancer Biother. Radiopharm. 23, 121–128 (2008)

    CAS  PubMed  Google Scholar 

  102. Brooks, N., Hsu, J., Esparon, S., Pouniotis, D., Pietersz, G.A.: Immunogenicity of a tripartite cell penetrating peptide containing a MUC1 variable number of tandem repeat (VNTR) and a T helper epitope. Molecules. 23, 2233 (2018)

    Article  PubMed Central  Google Scholar 

  103. Leiria Campo, V., Riul, T.B., Oliveira Bortot, L., Martins-Teixeira, M.B., Fiori Marchiori, M., Iaccarino, E., Ruvo, M., Dias-Baruffi, M., Carvalho, I.: A synthetic MUC1 Glycopeptide bearing βGalNAc-Thr as a Tn antigen isomer induces the production of antibodies against tumor cells. Chembiochem. 18, 527–538 (2017)

    Article  CAS  PubMed  Google Scholar 

  104. Wang, H., Yang, B., Wang, Y., Liu, F., Fernández-Tejada, A., Dong, S.: β-Glucan as an immune activator and a carrier in the construction of a synthetic MUC1 vaccine. Chem. Commun. (Camb.). 55, 253–256 (2018)

    Article  Google Scholar 

  105. Du, J.J., Wang, C.W., Xu, W.B., et al.: Multifunctional protein conjugates with built-in adjuvant (adjuvant-protein-antigen) as cancer vaccines boost potent immune responses. iScience. 23, 100935 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cai, H., Huang, Z.H., Shi, L., Sun, Z.Y., Zhao, Y.F., Kunz, H., Li, Y.M.: Variation of the glycosylation pattern in MUC1 glycopeptide BSA vaccines and its influence on the immune response. Angew. Chem. Int. Ed. Eng. 51, 1719–1723 (2012)

    Article  CAS  Google Scholar 

  107. Curry, J.M., Besmer, D.M., Erick, T.K., Steuerwald, N., Das Roy, L., Grover, P., Rao, S., Nath, S., Ferrier, J.W., Reid, R.W., Mukherjee, P.: Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One. 14, e0224309 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, X., McKay, C., Pett, C., Yu, J., Schorlemer, M., Ramadan, S., Lang, S., Behren, S., Westerlind, U., Finn, M.G., Huang, X.: Synthesis and immunological evaluation of disaccharide bearing MUC-1 Glycopeptide conjugates with virus-like particles. ACS Chem. Biol. 14, 2176–2184 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deguchi, T., Tanemura, M., Miyoshi, E., Nagano, H., Machida, T., Ohmura, Y., Kobayashi, S., Marubashi, S., Eguchi, H., Takeda, Y., Ito, T., Mori, M., Doki, Y., Sawa, Y.: Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: a novel approach to immunotherapy in pancreatic cancer. Cancer Res. 70, 5259–5269 (2010)

    Article  CAS  PubMed  Google Scholar 

  110. Guo, M., Luo, B., Pan, M., Li, M., Zhao, F., Dou, J.: MUC1 plays an essential role in tumor immunity of colorectal cancer stem cell vaccine. Int. Immunopharmacol. 85, 106631 (2020)

    Article  CAS  PubMed  Google Scholar 

  111. McDonald, D.M., Hanna, C.C., Ashhurst, A.S., Corcilius, L., Byrne, S.N., Payne, R.J.: Synthesis of a self-Adjuvanting MUC1 vaccine via Diselenide-Selenoester ligation-Deselenization. ACS Chem. Biol. 13, 3279–3285 (2018)

    Article  CAS  PubMed  Google Scholar 

  112. Glaffig, M., Stergiou, N., Hartmann, S., Schmitt, E., Kunz, H.: A synthetic MUC1 anticancer vaccine containing mannose ligands for targeting macrophages and dendritic cells. ChemMedChem. 13, 25–29 (2018)

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, H., Zhang, Z., Liu, G., Jiang, M., Wang, J., Liu, Y., Tai, G.: The effect of different immunization cycles of a recombinant Mucin1-maltose-binding protein vaccine on T cell responses to B16-MUC1 melanoma in mice. Int. J. Mol. Sci. 21, 5810 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  114. Fang, F., Ma, J., Ni, W., Wang, F., Sun, X., Li, Y., Li, Q., Xie, F., Wang, J., Zhai, R., Liu, Z., Gao, S., Tai, G.: MUC1 and maltose-binding protein recombinant fusion protein combined with bacillus Calmette-Guerin induces MUC1-specific and nonspecific anti-tumor immunity in mice. Mol. Med. Rep. 10, 1056–1064 (2014)

    Article  CAS  PubMed  Google Scholar 

  115. Mehrab Mohseni, M., Amani, J., Fasihi Ramandi, M., Mahjoubi, F., Jafaria, M., Salmanian, A.H.: Immunogenicity evaluation of recombinant edible vaccine candidate containing HER2-MUC1 against breast cancer. Iran. J. Allergy Asthma Immunol. 18, 511–522 (2019)

    PubMed  Google Scholar 

  116. Du, J.J., Zou, S.Y., Chen, X.Z., et al.: Liposomal antitumor vaccines targeting Mucin 1 elicit a lipid-dependent Immunodominant response. Chem. Asian J. 14, 2116–2121 (2019)

    Article  CAS  PubMed  Google Scholar 

  117. Hossain, M.K., Vartak, A., Karmakar, P., Sucheck, S.J., Wall, K.A.: Augmenting vaccine immunogenicity through the use of natural human anti-rhamnose antibodies. ACS Chem. Biol. 13, 2130–2142 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Karmakar, P., Lee, K., Sarkar, S., Wall, K.A., Sucheck, S.J.: Synthesis of a liposomal MUC1 Glycopeptide-based immunotherapeutic and evaluation of the effect of l-Rhamnose targeting on cellular immune responses. Bioconjug. Chem. 27, 110–120 (2016)

    Article  CAS  PubMed  Google Scholar 

  119. Li, M., Wang, Z., Yan, B., Yin, X., Zhao, Y., Yu, F., Meng, M., Liu, Y., Zhao, W.: Design of a MUC1-based tricomponent vaccine adjuvanted with FSL-1 for cancer immunotherapy. Medchemcomm. 10, 2073–2077 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Abdel-Aal, A.B., Lakshminarayanan, V., Thompson, P., Supekar, N., Bradley, J.M., Wolfert, M.A., Cohen, P.A., Gendler, S.J., Boons, G.J.: Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. Chembiochem. 15, 1508–1513 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lakshminarayanan, V., Thompson, P., Wolfert, M.A., Buskas, T., Bradley, J.M., Pathangey, L.B., Madsen, C.S., Cohen, P.A., Gendler, S.J., Boons, G.J.: Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc. Natl. Acad. Sci. U. S. A. 109, 261–266 (2012)

    Article  CAS  PubMed  Google Scholar 

  122. Hernández-Ramírez, J., Wong-Arce, A., González-Ortega, O., Rosales-Mendoza, S.: Expression in algae of a chimeric protein carrying several epitopes from tumor associated antigens. Int. J. Biol. Macromol. 147, 46–52 (2020)

    Article  PubMed  Google Scholar 

  123. Lakshminarayanan, V., Supekar, N.T., Wei, J., McCurry, D.B., Dueck, A.C., Kosiorek, H.E., Trivedi, P.P., Bradley, J.M., Madsen, C.S., Pathangey, L.B., Hoelzinger, D.B., Wolfert, M.A., Boons, G.J., Cohen, P.A., Gendler, S.J.: MUC1 vaccines, comprised of glycosylated or non-glycosylated peptides or tumor-derived MUC1, can circumvent Immunoediting to control tumor growth in MUC1 transgenic mice. PLoS One. 11, e0145920 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kimura, T., Finn, O.J.: MUC1 immunotherapy is here to stay. Expert. Opin. Biol. Ther. 13, 35–49 (2013)

    Article  CAS  PubMed  Google Scholar 

  125. Bafna, S., Singh, A.P., Moniaux, N., Eudy, J.D., Meza, J.L., Batra, S.K.: MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Res. 68, 9231–9238 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gautam, S.K., Kumar, S., Cannon, A., Hall, B., Bhatia, R., Nasser, M.W., Mahapatra, S., Batra, S.K., Jain, M.: MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin. Ther. Targets. 21, 657–669 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Singh, A.P., Moniaux, N., Chauhan, S.C., Meza, J.L., Batra, S.K.: Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res. 64(2), 622–630 (2004)

    Article  CAS  PubMed  Google Scholar 

  128. Chaturvedi, P., Singh, A.P., Chakraborty, S., Chauhan, S.C., Bafna, S., Meza, J.L., Singh, P.K., Hollingsworth, M.A., Mehta, P.P., Batra, S.K.: MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bafna, S., Kaur, S., Momi, N., Batra, S.K.: Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin. Br. J. Cancer. 101, 1155–1161 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, L., Kshirsagar, P., Christiansen, J., Gautam, S.K., Aithal, A., Gulati, M., Kumar, S., Solheim, J.C., Batra, S.K., Jain, M., Wannemuehler, M.J., Narasimhan, B.: Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β. J. Biomed. Mater. Res. A. (2020). https://doi.org/10.1002/jbm.a.37080

  131. Banerjee, K., Gautam, S.K., Kshirsagar, P., Ross, K.A., Spagnol, G., Sorgen, P., Wannemuehler, M.J., Narasimhan, B., Solheim, J.C., Kumar, S., Batra, S.K., Jain, M.: Amphiphilic polyanhydride-based recombinant MUC4β-nanovaccine activates dendritic cells. Genes Cancer. 10, 52–62 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cai, H., Palitzsch, B., Hartmann, S., Stergiou, N., Kunz, H., Schmitt, E., Westerlind, U.: Antibody induction directed against the tumor-associated MUC4 glycoprotein. Chembiochem. 16, 959–967 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (to I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inka Brockhausen.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Glycoconjugate Journal: special issue on Glycoconjugate vaccines: classic and novel approaches.

Editor: Roberto Adamo, December 31, 2020, https://www.springer.com/journal/10719

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockhausen, I., Melamed, J. Mucins as anti-cancer targets: perspectives of the glycobiologist. Glycoconj J 38, 459–474 (2021). https://doi.org/10.1007/s10719-021-09986-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-09986-8

Keywords

Navigation