Skip to main content
Log in

Selenylation modification: enhancement of the antioxidant activity of a Glycyrrhiza uralensis polysaccharide

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential trace element for human beings and many other forms of life. Organic selenium from natural foods has greater bioavailability and is safer than inorganic selenium species. In this article, the structural properties and antioxidant activities of a Glycyrrhiza uralensis polysaccharide (GUP) after selenylation modification were investigated. The GUP was extracted by water decoction and ethanol precipitation and purified via protein elimination using the trichloroacetic acid method and column chromatography. The purified product was subsequently modified by the nitric acid-sodium selenite (HNO3-Na2SeO3) method. The selenized GUP (SeGUP) product was characterized by Fourier transform-infrared (FT-IR) spectroscopy, and its thermal stability, particle size, and antioxidant activities were investigated. FT-IR analysis indicated that the selenium in SeGUP existed mainly as O-Se-O. The thermal stability and particle size of SeGUP differed significantly from those of GUP. Moreover, compared to GUP, SeGUP exhibited greater antioxidant activities in vitro and in vivo. These results indicate that selenylation modification significantly enhances the antioxidant activity of SeGUP, increasing its potential for application as an antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jassal, P.S., Kaur, G., Kaur, L.: Synergistic effect of curcuma longa and glycyrrhiza glabra extracts with copper ions on food spoilage bacteria. Int. J. Clin. Pharm. Net. 7, 371–375 (2015)

    CAS  Google Scholar 

  2. Yue, L., Wang, W., Wang, Y., Du, T., Shen, W., Tang, H., Wang, Y., Yin, H.: Bletilla Striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int. J. Biol. Macromol. 89, 376–388 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Wang, C., Xi, G.R., Shi, Y.R., Zhang, L.H.: Study on the anti-tumor effect in vivo of glycyrrhiza polysaccharide and its mechanism. Chin. J. Clin. Oncol. 8, 85–87 (2003) (in Chinese)

    Google Scholar 

  4. Zhang, C.H., Yu, Y., Liang, Y.Z., Chen, X.Q.: Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. Int. J. Biol. Macromol. 79, 681–686 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Kieliszek, M., Blazejak, S.: Selenium: significance, and outlook for supplementation. Nutrition. 29, 713–718 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Hurst, R., Hooper, L., Norat, T., Lau, R., Aune, D., Greenwood, D.C., Vieira, R., Collings, R., Harvey, L.J., Sterne, J.A., Beynon, R., Savović, J., Fairweather-Tait, S.J.: Selenium and prostate cancer: systematic review and meta-analysis. Am. J. Clin. Nutr. 96, 111–122 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. Jayaprakash, V., Marshall, J.R.: Selenium and other antioxidants for chemoprevention of gastrointestinal cancers. Best Pract. Res. Clin. Gastroenterol. 25, 507–518 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Chiu, S.T., Hsieh, S.L., Yeh, S.P., Jian, S.J., Cheng, W., Liu, C.H.: The increase of immunity and disease resistance of the giant freshwater prawn, Macrobrachium rosenbergii by feeding with selenium enriched-diet. Fish Shellfish Immunol. 29, 623–629 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Indira Priyadarsini, K.G., Singh, B., Kunwar, A.: Current developments on synthesis, redox reactions and biochemical studies of selenium antioxidants. Curr. Opin. Chem. Biol. 7, 37–46 (2013)

    Article  Google Scholar 

  10. Maseko, T., Howell, K., Dunshea, F.R., Ng, K.: Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem. 146, 327–333 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Shi, L., Zhang, C., Yue, W., Shi, L., Zhu, X., Lei, F.: Short-term effect of dietary selenium-enriched yeast on semen parameters, antioxidant status and se concentration in goat seminal plasma. Anim. Feed Sci. Tech. 157, 104–108 (2010)

    Article  CAS  Google Scholar 

  12. Qin, T., Ren, Z., Lin, D., Song, Y., Li, J., Ma, Y., Hou, X., Huang, Y.: Effects of selenizing Codonopsis pilosula polysaccharide on macrophage modulatory activities. J. Micobiol. Biotechnol. 26, 1358–1366 (2016)

    Article  CAS  Google Scholar 

  13. Li, H., Wang, Y., Wang, C., Zhang, S., Li, S., Zhou, G., Wang, S., Zhang, J.: Extraction, selenylation modification and antitumor activity of the glucan from Castanea mollissima Blume. Glycoconj. J. 34, 207–217 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Qin, T., Chen, J., Wang, D., Hu, Y., Wang, M., Zhang, J., Nguyen, T.L., Liu, C., Liu, X.: Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity. Carbohydr. Polym. 92, 645–650 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Qiu, S., Chen, J., Chen, X., Fan, Q., Zhang, C., Wang, D., Li, X., Chen, X., Liu, C., Gao, Z.: Optimization of selenylation conditions for lycium barbarum polysaccharide based on antioxidant activity. Carbohydr. Polym. 103, 48–153 (2014)

    Article  Google Scholar 

  16. Battin, E.E., Brumaghim, J.L.: Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys. 55, 1–23 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, B.T., Zhang, J., Yao, J., Song, S., Yin, Z.X., Gao, Q.Y.: Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Int. J. Biol. Macromol. 58, 320–328 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Hou, R., Chen, J., Yue, C., Li, X., Liu, J., Gao, Z., Liu, C., Lu, Y., Wang, D., Li, H., Hu, Y.: Modification of lily polysaccharide by selenylation and the immune-enhancing activity. Carbohydr. Polym. 142, 73–81 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Li, G., Wang, Z.: Sulfated esterifying technology of polysaccharide from Auricularia auricular and IR spectrum analysis. J. NE Forestry Uni. 12, 66–68 (2008) (in Chinese)

    Google Scholar 

  20. Yu, W., Yang, X.M., Liu, W.M., Liu, F.: Assay study on content of polysaccharides in ficus carica by phenol-sulfuric acid method. Food Sci. Technol. 10, 256–258 (2009)

    Google Scholar 

  21. Li, X., Hou, R., Yue, C., Liu, J., Gao, Z., Chen, J., Lu, Y., Wang, D., Liu, C., Hu, Y.: The selenylation modification of epimedium polysaccharide and isatis root polysaccharide and the immune-enhancing activity comparison of their modifiers. Biol. Trace Elem. Res. 171, 224–234 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Yen, G.C., Chen, H.Y.: Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agr. Food Chem. 43, 27–32 (1995)

    Article  CAS  Google Scholar 

  23. Chen, H.Y., Yen, G.C.: Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 101, 686–694 (2007)

    Article  CAS  Google Scholar 

  24. Halliwell, B., Gutteridge, J.M.C., Aruoma, O.I.: The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215–219 (1987)

  25. Yokozawa, T., Dong, E., Natagawa, T., Kashiwagi, H., Nakagawa, H., Takeuchi, S., Chung, H.Y.: In vitro and in vivo studies on the radical-scavenging activity of tea. J. Agr. Food Chem. 46, 2143–2150 (1998)

    Article  CAS  Google Scholar 

  26. Larrauri, J.A., Sanchez-Moreno, C., Saura-Calixto, F.: Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. J. Agr. Food Chem. 46, 2694–2697 (1998)

    Article  CAS  Google Scholar 

  27. Tsai, S.Y., Huang, S.J., Mau, J.L.: Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 98, 670–677 (2006)

    Article  CAS  Google Scholar 

  28. Jin, M., Lu, Z., Huang, M., Wang, Y., Wang, Y.: Effects of se-enriched polysaccharides produced by Enterobacter cloacae Z0206 on alloxan-induced diabetic mice. Int. J. Biol. Macromol. 50, 348–352 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Liu, J.Y., Feng, C.P., Li, X., Chang, M.C., Meng, J.L., Xu, L.J.: Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. Int. J. Biol. Macromol. 86, 594–598 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. Chen, T., Wang, J., Li, Y., Shen, J., Zhao, T., Zhang, H.: Sulfated modification and cytotoxicity of Portulaca oleracea L. polysaccharides. Glycoconj. J. 27, 635–642 (2010)

    Article  PubMed  Google Scholar 

  31. Li, C., Fu, X., Huang, Q., Luo, F.X., You, L.J.: Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities. Eur. Food Res. Technol. 240, 49–60 (2015)

    Article  CAS  Google Scholar 

  32. Zhang, J., Wang, F.X., Liu, Z.W., Zhang, S.T., Zhang, Y.Y., Liang, J.Y., Wang, Y.P.: Synthesis and characterization of seleno-Cynomorium songaricum Rupr. Polysaccharide. Nat. Prod. Res. 23, 1641–1651 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Liochev, S.I.: Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60, 1–4 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Ak, T., Gülçin, İ.: Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27–37 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J.L., Guo, H.Y., Zhang, J., Wang, X.F., Zhang, B.T., Yao, J., Wang, Y.P.: Sulfated modification, characterization and structure-antioxidant relationships of Artemisia sphaerocephala polysaccharides. Carbohydr. Polym. 81, 897–905 (2010)

    Article  CAS  Google Scholar 

  36. Eklund, P.C., Langvik, O.K., Warna, J.P., Salmi, T.O., Willfor, S.M., Sjoholm, R.E.: Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org. Bimol. Chem. 3, 3336–3347 (2005)

    Article  CAS  Google Scholar 

  37. Ye, S., Liu, F., Wang, J.H., Wang, H., Zhang, M.P.: Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr. Polym. 87, 764–770 (2012)

    Article  CAS  Google Scholar 

  38. Ramarathnam, N., Osawa, T., Ochi, H., Kawakishi, S.: The contribution of plant food antioxidants to human health. Trends Food Sci. Technol. 6, 75–82 (1995)

    Article  CAS  Google Scholar 

  39. Wan, D., Zhou, X., Xie, C., Shu, X., Wu, X., Yin, Y.: Toxicological evaluation of ferrous N-carbamylglycinate chelate: acute, sub-acute toxicity and mutagenicity. Regul. Toxicol. Pharmacol. 73, 644–651 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Ye, M., Qiu, T., Peng, W., Chen, W.X., Ye, Y.W., Lin, Y.R.: Purification, characterization and hypoglycemic activity of extracellular polysaccharides from Lachnum calyculiforme. Carbohydr. Polym. 86, 285–290 (2011)

    Article  CAS  Google Scholar 

  41. Pan, D., Mei, X.: Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr. Polym. 80, 908–914 (2010)

    Article  CAS  Google Scholar 

  42. Li, S.W., Luo, G.H., Qiao, F., Wang, F.J., Zhao, K.J., Wang, C.L.: Influence of Xanthomonas oryzae pv. oryzae PX099 inoculation on antioxidant enzyme activity and defense gene expression in CBB23. Chin. J. Appl. Environ. Biology. 19, 980–985 (2013) (in Chinese with English abstract)

    Google Scholar 

  43. Sun, Z.H., He, Z.X., Zhang, Q.L., Tan, Z.L., Han, X.F., Tang, S.X.: Effects of protein and/or energy restriction for six weeks on antioxidation capacity of plasma and gastrointestinal epithelial tissues of weaned kids. Livest. Sci. 149, 232–241 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the staff at the Institute of Chinese Veterinary Medicine of Xinjiang Shihezi University for their assistances with these experiments. We would also like to thank Editage (www.editage.com) for English language editing and Publication Support.

The study was supported by the Talents of High Level Scientific Research Foundation [Grant no. RCZX201404].

Funding

The study was supported by the Talents of High Level Scientific Research Foundation [Grant no. RCZX201404].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Li Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments related with animals were approved by the Animal Ethics Committee of Shihezi University (Approval No. AECSU2013–17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, KX., Zhu, XQ., Chen, J. et al. Selenylation modification: enhancement of the antioxidant activity of a Glycyrrhiza uralensis polysaccharide. Glycoconj J 35, 243–253 (2018). https://doi.org/10.1007/s10719-018-9817-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9817-8

Keywords

Navigation