Skip to main content
Log in

Molecular dynamics study of the conformations of glycosidic linkages in sialic acid modified ganglioside GM3 analogues

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The objective of the present study is to model the analogues of monosialoganglioside (GM3) by making modifications in its sialic acid residue with different substitutions in aqueous environment and to determine their structural stability based upon computational molecular dynamics. Molecular mechanics and molecular dynamics investigation was carried out to study the conformational preferences of the analogues of GM3. Dynamic simulations were carried out on the analogues of GM3 varying in the substituents at C-1, C-4, C-5, C-8 and C-9 positions of their sialic acid or Neuraminic acid (NeuAc) residue. The analogues are soaked in a periodic box of TIP3P water as solvent and subjected to a 10 ns molecular dynamics (MD) simulation using AMBER ff03 and gaff force fields with 30 ps equilibration. The analogue of GM3 with 9-N-succNeuAc (analogue5, C9 substitution) was observed to have the lowest energy of −6112.5 kcal/mol. Graphical analysis made on the MD trajectory reveals the direct and water mediated hydrogen bonds existing in these sialic acid analogues. The preferable conformations for glycosidic linkages of GM3 analogues found in different minimum energy regions in the conformational maps were identified. This study sheds light on the conformational preferences of GM3 analogues which may be essential for the design of GM3 analogues as inhibitors for different ganglioside specific pathogenic proteins such as bacterial toxins, influenza toxins and neuraminidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bacia, K., Scherfeld, D., Kahya, N., Schwille, P.: Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87, 1034–1043 (2004)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Huwiler, A., Kolter, T., Pfeilschifter, J., Sandhoff, K.: Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta 1485, 63–99 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Leeden, R.W., Yu, R.K.: Gangliosides: Structure, isolation and analysis. Methods Enzymol. 83, 139–191 (1982)

    Article  Google Scholar 

  4. Ishida, H., Kiso, M.: Chemical synthesis of bioactive oligosaccharides. systematic syntheses of gangliosides. Trends Glycosci. Glycotech. 13, 57–64 (2001)

    Article  Google Scholar 

  5. McDaniel, R.V., McIntosh, T.J.: X-Ray diffraction studies of the cholera toxin receptor, GM1. BioPhy. J. 49, 94–96 (1986)

    Article  CAS  Google Scholar 

  6. Hashiramoto, A., Mizukami, H., Yamashita, T.: Ganglioside GM3 promotes cell migration by regulating MAPKand c-Fos/AP-1. Oncogene 25, 3948–3955 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Dyatlovitskaya, E.V., Kandyba, A.G.: Sphingolipids in tumor metastases and angiogenesis. Biochem. Mosc. 71, 347–353 (2006). PMID:16615853

    Article  CAS  Google Scholar 

  8. Bada, A.M., Casac, A., Mancebo, A., Fuentes, D., Gonz¡lez, B.: Acute and repeated dose intramuscular toxicity of GM3 cancer vaccine in SD rats. Pak. J. Biol. Sci. 8, 1045–1050 (2005)

    Article  CAS  Google Scholar 

  9. Carr, A., Rodriguez, E., Mdel, C.A., Camacho, R., Osorio, M., et al.: Immunotherapy of advanced breast cancer with a heterophilic ganglioside (NeuGcGM3) cancer vaccine. J. Clin. Oncol. 21, 1015–1021 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Guthmann, M.D., Castro, M.A., Zinat, G., Venier, C., Koliren, L., et al.: Cellular and humoral immune response to N-Glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J. Immunother. 29, 215–223 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Basu, S., Ma, R., Boyle, P.J., Mikulla, B., Bradley, M., et al.: Apoptosis of human carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKBR3 cells with: Cis -platin, tamoxifen, melphalan, betulinic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj. J. 20, 563–577 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Oliva, J.P., Valdes, Z., Casaco, A., Pimentel, G., Gonzalez, J., et al.: Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14 F7 monoclonal antibody labelled with (99 m)Tc. Breast Cancer Res. Treat. 96, 115–121 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Nawar, H.F., Arce, S., Russell, M.W., Connell, T.D.: Mucosal adjuvant properties of mutant lt-iia and lt-iib enterotoxins that exhibit altered ganglioside-binding activities. Infect. Immun. 73, 1330–1342 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nawar, H.F., Berenson, C.S., Hajishengallis, G., Takematsu, H., Mandell, L., Clare, R.L., Connell, T.D.: Binding to gangliosides containing N-acetylneuraminic acid is sufficient to mediate the immunomodulatory properties of the nontoxic mucosal adjuvant LT-IIb(T13I). Clin. Vaccine Immunol. 17, 969–978 (2010). PMID:20392887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lingwood, C.A.: Glycolipid receptors for verotoxin and helicobacter pylori: role in pathology. Biochim. Biophys. Acta 1455, 375–386 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Hugosson, S., Angstrom, J., Olsson, B.M., Bergstrom, J., Fredlund, H., Olcen, P.: Glycosphingolipid binding specificities of Neisseria meningitides and Haemophilus influenza: Detection, isolation and characterization of a binding-active glycosphingolipid from human oropharyngeal epithelium. J. Biochem. 124, 1138–1152 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Rolsma, M.D., Kuhlenschmidt, T.B., Gelberg, H.B., Kuhlenschidt, M.S.: Structure and function of a ganglioside receptor for porcine rotavirus. J. Virol. 72, 9079–9091 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Vengris, V.E., Reynolds Jr., F.H., Hollenberg, M.D., Pitha, P.M.: Interferon action: role of membrane gangliosides. Virology 72, 486–493 (1976)

    Article  CAS  PubMed  Google Scholar 

  19. Lingwood, C.A.: Shiga toxin receptor glycolipid binding. Pathol. Utility, Methods Mol. Med 73, 165–186 (2003)

    CAS  Google Scholar 

  20. Li, Y., Li, S., Hasegawa, A., Ishida, H., Kiso, M., et al.: Structural basis for the resistance of tay-sachs ganglioside GM2 to enzymatic degradation. J. Biol. Chem. 274, 10014–10018 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Singh, A.K., Harrison, S.H., Schoeniger, J.S.: Gangliosides as receptors for biological toxins: development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Analyt. Chem. 72, 6019–6024 (2000)

    Article  CAS  Google Scholar 

  22. Bagchi, A., Ghosh, T.C.: Structural and functional characterization of SoxW-a thioredoxin involved in the transport of reductants during sulfur oxidation by the global sulfur oxidation reaction cycle. Res. J. Microbiol. 1, 392–400 (2006)

    Article  CAS  Google Scholar 

  23. Bagchi, A., Ghosh, T.C.: Homology modeling and molecular dynamics study of the interactions of SoxY and SoxZ: the central player of biochemical oxidation of sulfur anions in pseudaminobacter salicylatoxidans. Res. J. Microbiol. 2, 569–576 (2007)

    Article  CAS  Google Scholar 

  24. Bouarkat, M., Sabeur, S.A., Bouamrane, R.: Investigating the formation of helical states in the process of homopolymer collapse using molecular dynamics simulations. J Applied Sciences 10, 209–214 (2010)

    Article  CAS  Google Scholar 

  25. Maftouni, N., Amininasab, M., Kowsari, F.: Molecular dynamics study of nanobio membranes. J Applied Sciences 11, 1062–1065 (2011)

    Article  CAS  Google Scholar 

  26. Sharmila, D.J.S., Jaishree, G., Rapheal, V.S.: Ganglioside GM3 analogues as inhibitors for staphylococcal enterotoxin B and endoglycoceramidase II from Rhodococcus Sp. – docking and ADME screening studies. Asian J. Pharma. Hea. Sci 2, 359–369 (2012)

    CAS  Google Scholar 

  27. Oetke, C., Brossmer, R., Mantey, L.R., Hinderlich, S., Isecke, R., et al.: Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J. Biol. Chem. 277, 6688–6695 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Sharmila, D.J.S., Veluraja, K.: Monosialogangliosides and their interaction with cholera toxin-investigation by molecular modelling and molecular mechanics. J. Biomol. Struct. Dyn. 21, 591–614 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., et al.: Amber 10: Users’ manual. University of California, San Francisco (2008)

    Google Scholar 

  30. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., et al.: A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)

    Article  CAS  Google Scholar 

  31. Sauter, N.K., Hanson, J.E., Glick, G.D., Brown, J.H., Crowther, R.L., et al.: Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31, 9609–9621 (1992)

    Article  CAS  PubMed  Google Scholar 

  32. Bianco, A., Brufani, M., Ciabatti, R., Melchioni, C., Pasquali, V.: Neuraminic acid derivatives as anti-influenza drugs. Mol. Online 2, 129–136 (1998). doi:10.1007/s007830050068

    Article  CAS  Google Scholar 

  33. Brocca, P., Berthault, P., Sonnino, S.: Conformation of the oligosaccharide chain of GM1 ganglioside in a carbohydrate-enriched surface. Biophys. J. 74, 309–318 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sabesan, S., Bock, K., Lemieux, R.U.: The conformational properties of the gangliosides GM2 and GM1 based on 1H- and 13C-NMR studies. Can. J. Chem. 62, 1034–1045 (1984)

    Article  CAS  Google Scholar 

  35. Sharmila, D.J.S., Veluraja, K.: Conformations of higher gangliosides and their binding with cholera toxin-investigation by molecular modeling, molecular mechanics, and molecular dynamics. J. Biomol. Struct. Dyn. 23, 641–656 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. DeMarco, M.L., Woods, R.J.: Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces. Glycobiol. 19, 344–355 (2009)

    Article  CAS  Google Scholar 

  37. Sharrow, S.D., Edmonds, K.A., Goodman, M.A., Novotny, M.V., Stone, M.J.: Thermodynamic consequences of disrupting a water-mediated hydrogen bond network in a protein: pheromone complex. Protein Sci. 14, 249–256 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Patel, R.Y., Balaji, P.V.: Characterization of the conformational and orientational dynamics of ganglioside GM1 in a dipalmitoylphosphatidylcholine bilayer by molecular dynamics simulations. Biochim. Biophys. Acta (Biomembranes) 1768, 1628–1640 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Science and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India (SERB Sanction no. SR/FT/LS-157/2009 dt 30.04.2012) - OYS scheme project grant sanctioned to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jeya Sundara Sharmila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaishree, G., Sharmila, D.J.S. Molecular dynamics study of the conformations of glycosidic linkages in sialic acid modified ganglioside GM3 analogues. Glycoconj J 31, 365–386 (2014). https://doi.org/10.1007/s10719-014-9532-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9532-z

Keywords

Navigation