Skip to main content
Log in

Investigation of the Structure and Influence of Ion-Exchange on the Microhardness of Low-Alkali, Transparent, Gahnite-Based Glass-Ceramics

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Transparent glass-ceramic is attracting more and more attention as a material for protecting the screens of electronic devices. The possibility of ionic hardening of transparent gahnite glass-ceramics containing a small amount of Na2O is considered. The dependence of the microhardness of gahnite glass-ceramics on ion-exchange treatment regimes was investigated. The structure was investigated by x-ray phase analysis, transmission electron microscopy, Raman spectroscopy, and laser-spark emission spectroscopy. It is shown that under certain conditions ionic strengthening of glass-ceramics, even with a low content of alkali ions in the composition, effects higher microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. Wang, B. Wang, N. M. A. Krishnan, et al., “Ion exchange strengthening and thermal expansion of glasses: common origin and critical role of network connectivity,” J. Non-Cryst. Solids, 455, 70 – 74 (2017).

    Article  CAS  Google Scholar 

  2. R. Gy, “Ion exchange for glass strengthening,” MSEB, 149(2), 159 – 165 (2008).

    Article  CAS  Google Scholar 

  3. I. W. Donald, “Methods for improving the mechanical properties of oxide glasses,” J. Mater. Sci., 24, 4177 – 4208.

  4. J. H. Nielsen, K. Thiele, J. Schneider, et al., “Compressive zone depth of thermally tempered glass,” Constr. Build. Mater., 310, 125238 (2021).

    Article  CAS  Google Scholar 

  5. M. B. Abrams, D. J. Green, and S. J. Glass, “Fracture behavior of engineered stress profile soda lime silicate glass,” J. Non-Cryst. Solids, 321, 10 – 19 (2003).

    Article  CAS  Google Scholar 

  6. Y. Guo, J. Li, Y. Zhang, et al., “High-entropy R2O3–Y2O3–TiO2–ZrO2–Al2O3 glasses with ultrahigh hardness, Young’s modulus and indentation fracture toughness,” Science, 24(7), 102735 (2021).

    CAS  Google Scholar 

  7. T. To, S. S. Sorensen, J. F. Christensen, et al., “Bond switching in densified oxide glass enables record-high fracture toughness,” ACS Appl. Mater. & Interfaces, 13(15), 17753 – 17765 (2021).

    Article  CAS  Google Scholar 

  8. J. F. Christensen, S. S. Sorensen, T. To, et al., “Toughening of soda-lime-silica glass by nanoscale phase separation: Molecular dynamics study,” Phys. Rev. Mater., 5(9), 093602 (2021).

    Article  CAS  Google Scholar 

  9. W. Feng, D. Bonamy, F. Celarié, et al., “Stress corrosion cracking in amorphous phase separated oxide glasses: A holistic review of their structures, physical, mechanical and fracture properties,” Corros. Mater., 2(3), 412 – 446 (Celarié) (2021).

  10. J. Luo, H. Huynh, C. G. Pantano, et al., “Hydrothermal reactions of soda lime silica glass — Revealing subsurface damage and alteration of mechanical properties and chemical structure of glass surfaces,” J. Non-Cryst. Solids, 452(11), 93 – 101 (2016).

    Article  CAS  Google Scholar 

  11. M. Tomozawa and E. M. Aaldenberg, “The role of water in surface stress relaxation of glass,” Phys. Chem. Glas.: Eur. J. Glass Sci. Technol. B, 58(4), 156 – 164 (2017).

  12. X. Liu, J. Zhou, S. Zhou, et al. “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci., 97, 38 – 96 (2018).

    Article  CAS  Google Scholar 

  13. G. H. Beall, M. Comte, M. J. Dejneka, et al., “Ion-exchange in glass-ceramics,” Front. Mater., 3(41) (2016).

  14. G. H. Beall, B. R. Karstetter, and H. L. Rittler, “Crystallization and chemical strengthening of stuffed β-quartz glass-ceramics,” J. Am. Ceram. Soc., 5, 181 – 190 (1967).

    Article  Google Scholar 

  15. B. R. Karstetter and R. O. Voss, “Chemical strengthening of glass-ceramic in the system Li2O–Al2O3–SiO2,” J. Am. Ceram. Soc., 50, 133 – 137 (1967).

    Article  CAS  Google Scholar 

  16. K. Łączka, K. C. Kowalska, M. Sroda, et al., “Glass-ceramics of LAS (Li2O–Al2O3–SiO2) system enhanced by ion-exchange in KNO3 salt bath,” J. Non-Cryst. Solids, 428, 90 – 97 (2015).

    Article  Google Scholar 

  17. X. C. Li, D. Li, M. Meng, et al. “Significant strengthening of a lithium disilicate glass by Li+/Na+ exchange at substantially lowered temperature,” Ceram. Int., 45, 22665 – 22674 (2019).

    Article  CAS  Google Scholar 

  18. F. Auzel, K. E. L. Kalita, and P. S. Cruz, “A new Er3+-doped vitreous fluoride amplification medium with crystal-like cross-sections and reduced inhomogeneous line width,” Opt. Mater., 5, 75 – 78 (1996).

    Article  CAS  Google Scholar 

  19. N. H. Golshan, B. E. Yekta, and V. K. Marghussian, “Crystallization and optical properties of a transparent mullite glass ceramic,” Opt. Mater., 34, 596 – 599 (2012).

    Article  Google Scholar 

  20. L. Sant’Ana Gallo, F. Celarié, N. Audebrand, et al., “In situ crystallization and elastic properties of transparent MgO– Al2O3–SiO2 glass-ceramic,” J. Am. Ceram. Soc., 100(5), 2166 – 2175 (2017).

  21. X. Hao, Z. Luo, X. Hu, et al., “Effect of replacement of B2O3 by ZnO on preparation and properties of transparent cordierite-based glass-ceramics,” J. Non-Cryst. Solids, 432, 265 – 270 (2016).

    Article  CAS  Google Scholar 

  22. O. Dymshits, E. Gorokhova, I. Alekseeva, et al., “Transparent materials based on semiconducting ZnO: glass-ceramics and optical ceramics doped with rare-earth and transition-metal ions,” J. Non-Cryst. Solids, 588, 121625 (2022).

    Article  CAS  Google Scholar 

  23. Y. Guo, C. Liu, J.Wang, et al., “Effect of ZrO2 crystallization on ion exchange properties in aluminosilicate glass,” J. Eur. Ceram. Soc., 40(5), 2179 – 2184 (2020).

    Article  CAS  Google Scholar 

  24. J. Huang, J. Zhang, Y. Yu, et al., “Transparent MgO–Al2O3–SiO2 glass-ceramics prepared with ZrO2 and SnO2 as nucleating agents,” J. Non-Cryst. Solids, 588, 121585 (2022).

    Article  CAS  Google Scholar 

  25. Y. Guo, Y. Lu, C. Liu, et al., “Effect of ZnAl2O4 crystallization on ion-exchange properties in aluminosilicate glass,” J. Alloys Compd., 851, 156891 (2021).

    Article  CAS  Google Scholar 

  26. Y. Guo, J. Wang, J. Ruan, et al., “Microstructure and ion-exchange properties of glass-ceramics containing ZnAl2O4 and β-quartz solid solution nanocrystals,” J. Eur. Ceram. Soc., 41(10), 5331 – 5340 (2021).

    Article  CAS  Google Scholar 

  27. G. Yu. Shakhgildyan, V. I. Savinkov, A. Yu Shakhgildyan, et al., Effect of sitallization conditions on the hardness of transparent sitalls in the system ZnO–MgO–Al2O3–SiO2,” Glass Ceram., 77(11), 426 – 428 (2021).

    Article  CAS  Google Scholar 

  28. A. A. Loshmanov, V. N. Sigaev, R. Ya. Khodakovskaya, et al. “Small-angle neutron scattering on silica glasses containing titania,” J. Appl. Crystallogr., 7(2), 207 – 210 (1974).

    Article  CAS  Google Scholar 

  29. V. N. Sigaev, “The structure of oxide glasses and the processes of formation of polar glass-crystalline textures,” Phys. Chem. Glass, 24(4), 429 – 444 (1998).

    Google Scholar 

  30. O. S. Dymshits, A. A. Zhilin, V. I. Petrov, et al., “A Raman spectroscopic study of phase transformations in titanium-containing magnesium aluminosilicate glasses,” Glass Phys. Chem., 28, 66 – 78 (2002).

    Article  CAS  Google Scholar 

  31. G. Shakhgildyan, V. Durymanov, M. Ziyatdinova, et al., “Effect of gold nanoparticles on the crystallization and optical properties of glass in ZnO–MgO–Al2O3–SiO2 system,” Crystals, 12(2), 287 (2022).

    Article  CAS  Google Scholar 

  32. M. Potuzak and M. M. Smedskjaer, “Alkali diffusivity in alkaline earth sodium boroaluminosilicate glasses,” Solid State Ion., 263, 95 – 98 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Shakhgil’dyan.

Additional information

Translated from Steklo i Keramika, No. 3, pp. 17 – 25, March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhgil’dyan, G.Y., Alekseev, R.O., Naumov, A.S. et al. Investigation of the Structure and Influence of Ion-Exchange on the Microhardness of Low-Alkali, Transparent, Gahnite-Based Glass-Ceramics. Glass Ceram 80, 94–99 (2023). https://doi.org/10.1007/s10717-023-00564-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00564-y

Keywords

Navigation