Skip to main content
Log in

The Schwinger effect and natural inflationary magnetogenesis

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the process of inflationary magnetogenesis in the natural single-field inflation model in two parts. First we switch off the Schwinger effect and consider the conformal invariance of Maxwell action should be broken by kinetic coupling \(I^{2}(\phi )F_{\mu \nu }F^{\mu \nu }\) with the inflation field and the coupling function as a power of a scale factor, \(I(\phi )\propto a^{\alpha }\), and \(\alpha <0\) must be used in order to avoid the back-reaction problem. For such \(\alpha \), the electric component of the energy density dominates the magnetic one because \(I(\phi )\) is decreasing function of time during inflation and, for \(\alpha \lesssim -2.2\), it causes strong back-reaction which can spoil inflation and terminate the enhancement of the magnetic field. When we switch on the Schwinger effect, there is difference in background inflation field. Therefore, the Schwinger effect in this model has alteration in magneto-genesis. The Schwinger effect decreases the value of the electric field and helps to finish the inflation stage and enter the stage of preheating. It considerably and effectively produces the charged particles, implementing the Schwinger reheating framework-scenario even before the fast oscillations of the inflation field. The numerical results in both parts carried out in natural single-field inflation model with coupling function \(I\left( \phi \right) =\cos ^{\alpha \beta }\left( \frac{\phi }{2f}\right) \) where \(\alpha \) is coupling parameter and \(\beta =\frac{2f^{2}}{M_{p}^{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The author confirms that this manuscript has no associated data in a data repository.

References

  1. Kronberg, P.P.: Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325 (1994)

    ADS  Google Scholar 

  2. Grasso, D., Rubinstein, H.R.: Magnetic fields in the early universe. Phys. Rep. 348, 163 (2001)

    ADS  Google Scholar 

  3. Widrow, L.M.: Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002)

    ADS  Google Scholar 

  4. Giovannini, M.: The magnetized universe. Int. J. Mod. Phys. D 13, 391 (2004)

    ADS  MATH  Google Scholar 

  5. Kandus, A., Kunze, K.E., Tsagas, C.G.: Primordial magnetogenesis. Phys. Rep. 505, 1 (2011)

    ADS  Google Scholar 

  6. Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)

    ADS  Google Scholar 

  7. Subramanian, K.: The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016)

    ADS  Google Scholar 

  8. Ade, P.A.R., et al: (Planck Collaboration). Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016)

  9. Sutton, D.R., Feng, C., Reichardt, C.L.: Current and future constraints on primordial magnetic fields. Astrophys. J. 846, 164 (2017)

    ADS  Google Scholar 

  10. Jedamzik, K., Saveliev, A.: A stringent limit on primordial magnetic fields from the cosmic microwave backround radiation. arXiv:1804.06115 [astro-ph.CO]

  11. Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010)

    ADS  Google Scholar 

  12. Tavecchio, F., Ghisellini, G., Foschini, L., et al.: The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010)

    ADS  Google Scholar 

  13. Taylor, A.M., Vovk, I., Neronov, A.: Extragalactic magnetic fields constraints from simultaneous GeV–TeV observations of blazars. Astron. Astrophys. 529, A144 (2011)

    ADS  Google Scholar 

  14. Caprini, C., Gabici, S.: Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015)

    ADS  Google Scholar 

  15. Biermann, L.: Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum. (About the origin of the magnetic fields on stars and in the interstellar space). Z. Naturforsch. A5, 65 (1950)

    ADS  MATH  Google Scholar 

  16. Zeldovich, Y.B., Ruzmaikin, A.A., Sokoloff, D.D.: Magnetic Fields in Astrophysics. Gordon and Breach, New York (1990)

    Google Scholar 

  17. Lesch, H., Chiba, M.: Protogalactic evolution and magnetic fields. Astron. Astrophys. 297, 305 (1995)

    ADS  Google Scholar 

  18. Kulsrud, R., Cowley, S.C., Gruzinov, A.V., et al.: Dynamos and cosmic magnetic fields. Phys. Rep. 283, 213 (1997)

    ADS  Google Scholar 

  19. Colgate, S.A., Li, H.: The origin of the magnetic fields of the universe: the plasma astrophysics of the free energy of the universe. Phys. Plasmas 8, 2425 (2001)

    ADS  Google Scholar 

  20. Rees, M.J.: The origin and cosmogonic implications of seed magnetic fields. Q. J. R. Astron. Soc. 28, 197 (1987)

    ADS  Google Scholar 

  21. Daly, R.A., Loeb, A.: A possible origin of galactic magnetic fields. Astrophys. J. 364, 451 (1990)

    ADS  Google Scholar 

  22. Ensslin, T.A., Biermann, P.L., Kronberg, P.P., et al.: Cosmic-ray protons and magnetic fields in clusters of galaxies and their cosmological consequences. Astrophys. J. 477, 560 (1997)

    ADS  Google Scholar 

  23. Bertone, S., Vogt, C., Ensslin, T.: Magnetic field seeding by galactic winds. Mon. Not. R. Astron. Soc. 370, 319 (2006)

    ADS  Google Scholar 

  24. Turner, M.S., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988)

    ADS  Google Scholar 

  25. Ratra, B.: Cosmological seed magnetic field from inflation. Astrophys. J. 391, L1 (1992)

    ADS  Google Scholar 

  26. Hogan, C.J.: Magnetohydrodynamic effects of a first-order cosmological phase transition. Phys. Rev. Lett. 51, 1488 (1983)

    ADS  Google Scholar 

  27. Quashnock, J.M., Loeb, A., Spergel, D.N.: Magnetic field generation during the cosmological QCD phase transition. Astrophys. J. 344, L49 (1989)

    ADS  Google Scholar 

  28. Vachaspati, T.: Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258 (1991)

    ADS  Google Scholar 

  29. Cheng, B.-L., Olinto, A.V.: Primordial magnetic fields generated in the quark-hadron transition. Phys. Rev. D 50, 2421 (1994)

    ADS  Google Scholar 

  30. Sigl, G., Olinto, A.V., Jedamzik, K.: Primordial magnetic fields from cosmological first order phase transitions. Phys. Rev. D 55, 4582 (1997)

    ADS  Google Scholar 

  31. Ahonen, J., Enqvist, K.: Magnetic field generation in first order phase transition bubble collisions. Phys. Rev. D 57, 664 (1998)

    ADS  Google Scholar 

  32. Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532 (1981)

    ADS  Google Scholar 

  33. Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)

    ADS  Google Scholar 

  34. Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)

    ADS  Google Scholar 

  35. Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary Universe. Phys. Rev. Lett. 49, 1110 (1982)

    ADS  Google Scholar 

  36. Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983)

    ADS  Google Scholar 

  37. Grishchuk, L.P.: Amplification of gravitational waves in an isotropic universe. Sov. Phys. JETP 40, 409 (1975)

    ADS  MathSciNet  Google Scholar 

  38. Starobinsky, A.A.: Spectrum of relict gravitational radiation and the early state of the Universe. JETP Lett. 30, 682 (1979)

    ADS  Google Scholar 

  39. Rubakov, V.A., Sazhin, M.V., Veryaskin, A.V.: Graviton creation in the inflationary universe and the grand unification scale. Phys. Lett. B 115, 189 (1982)

    ADS  Google Scholar 

  40. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)

    ADS  Google Scholar 

  41. Dolgov, A.D.: Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D 48, 2499 (1993)

    ADS  Google Scholar 

  42. Gasperini, M., Giovannini, M., Veneziano, G.: Primordial magnetic fields from string cosmology. Phys. Rev. Lett. 75, 3796 (1995)

    ADS  Google Scholar 

  43. Giovannini, M.: Magnetogenesis and the dynamics of internal dimensions. Phys. Rev. D 62, 123505 (2000)

    ADS  Google Scholar 

  44. Atmjeet, K., Pahwa, I., Seshadri, T.R., et al.: Cosmological magnetogenesis from extra-dimensional Gauss-Bonnet gravity. Phys. Rev. D 89, 063002 (2014)

    ADS  Google Scholar 

  45. Giovannini, M.: On the variation of the gauge couplings during inflation. Phys. Rev. D 64, 061301 (2001)

    ADS  Google Scholar 

  46. Bamba, K., Yokoyama, J.: Large scale magnetic fields from inflation in dilaton electromagnetism. Phys. Rev. D 69, 043507 (2004)

    ADS  Google Scholar 

  47. Martin, J., Yokoyama, J.: Generation of large-scale magnetic fields in single-field inflation. J. Cosmol. Astropart. Phys. 01, 025 (2008)

    ADS  Google Scholar 

  48. Demozzi, V., Mukhanov, V.M., Rubinstein, H.: Magnetic fields from inflation? J. Cosmol. Astropart. Phys. 08, 025 (2009)

    ADS  Google Scholar 

  49. Kanno, S., Soda, J., Watanabe, M.: Cosmological magnetic fields from inflation and backreaction. J. Cosmol. Astropart. Phys. 12, 009 (2009)

    ADS  Google Scholar 

  50. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: Inflationary magnetogenesis without the strong coupling problem. J. Cosmol. Astropart. Phys. 10, 004 (2013)

    ADS  Google Scholar 

  51. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: Inflationary magnetogenesis without the strong coupling problem II: constraints from CMB anisotropies and B-modes. J. Cosmol. Astropart. Phys. 06, 053 (2014)

    ADS  Google Scholar 

  52. Vilchinskii, S., Sobol, O., Gorbar, E.V., et al.: Magnetogenesis during inflation and preheating in the Starobinsky model. Phys. Rev. D 95, 083509 (2017)

    ADS  Google Scholar 

  53. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Kobayashi, T., Afshordi, N.: Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early Universe. J. High Energy Phys. 10, 166 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Fröb, M.B., Garriga, J., Kanno, S., Sasaki, M., Soda, J., Tanaka, T., Vilenkin, A.: Schwinger effect in de Sitter space. J. Cosmol. Astropart. Phys. 04, 009 (2014). https://doi.org/10.1088/1475-7516/2014/04/009. arXiv: 1401.4137 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  56. Bavarsad, E., Stahl, C., Xue, S.-S.: Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 94, 104011 (2016)

    ADS  MathSciNet  Google Scholar 

  57. Stahl, C., Strobel, E., Xue, S.-S.: Fermionic current and Schwinger effect in de Sitter spacetime. Phys. Rev. D 93, 025004 (2016). https://doi.org/10.1103/PhysRevD.93.025004

    Article  ADS  MathSciNet  Google Scholar 

  58. Stahl, C., Xue, S.-S.: Schwinger effect and backreaction in de Sitter spacetime. Phys. Lett. B 760, 288 (2016). https://doi.org/10.1016/j.physletb.2016.07.011

    Article  ADS  Google Scholar 

  59. Hayashinaka, T., Fujita, T., Yokoyama, J.: Fermionic Schwinger effect and induced current in de Sitter space. J. Cosmol. Astropart. Phys. 07, 010 (2016). https://doi.org/10.1088/1475-7516/2016/07/010. arXiv: 1603.04165 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  60. Hayashinaka, T., Yokoyama, J.: Point splitting renormalization of Schwinger induced current in de Sitter spacetime. J. Cosmol. Astropart. Phys. 07, 012 (2016). https://doi.org/10.1088/1475-7516/2016/07/012. arXiv: 1603.06172 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  61. Sharma, R., Singh, S.: Multifaceted Schwinger effect in de Sitter space. Phys. Rev. D 96, 025012 (2017). https://doi.org/10.1103/PhysRevD.96.025012. arXiv: 1704.05076 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  62. Tangarife, W., Tobioka, K., Ubaldi, L., Volansky, T.: Dynamics of relaxed inflation. J. High Energy Phys. 02, 084 (2018). https://doi.org/10.1007/JHEP02(2018)084. arXiv: 1706.03072 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  63. Hayashinaka, T., Xue, S.-S.: Physical renormalization condition for de Sitter QED. Phys. Rev. D 97, 105010 (2018). https://doi.org/10.1103/PhysRevD.97.105010. arXiv: 1802.03686 [gr-qc]

    Article  ADS  Google Scholar 

  64. Hayashinaka, T.: Analytical investigation into electromagnetic response of quantum fields in de Sitter spacetime. Ph.D. thesis, University of Tokyo (2018)

  65. Stahl, C.: Schwinger effect impacting primordial magnetogenesis. Nucl. Phys. B 939, 95 (2018). arXiv: 1806.06692 [hep-th]

    ADS  MATH  Google Scholar 

  66. Geng, J.-J., Li, B.-F., Soda, J., Wang, A., Wu, Q., Zhu, T.: Schwinger pair production by electric field coupled to inflaton. J. Cosmol. Astropart. Phys. 02, 018 (2018). https://doi.org/10.1088/1475-7516/2018/02/018. arXiv: 1706.02833 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  67. Bavarsad, E., Kim, S.P., Stahl, C., Xue, S.-S.: Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime. Phys. Rev. D 97, 025017 (2018). https://doi.org/10.1103/PhysRevD.97.025017. arXiv: 1707.03975 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  68. Giovannini, M.: Spectator electric fields, de Sitter spacetime, and the Schwinger effect. Phys. Rev. D 97, 061301(R) (2018). https://doi.org/10.1103/PhysRevD.97.061301. arXiv: 1801.09995 [hep-th]

    Article  ADS  Google Scholar 

  69. Kitamoto, H.: Schwinger effect in inflaton-driven electric field. Phys. Rev. D 98, 103512 (2018). https://doi.org/10.1103/PhysRevD.98.103512. arXiv: 1807.03753 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  70. Freese, K., Frieman, J.A., Olinto, A.V.: Natural inflation with pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 65, 3233 (1990)

    ADS  Google Scholar 

  71. Adams, F.C., Bond, J.R., Freese, K., et al.: Natural inflation: particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer. Phys. Rev. D 47, 426 (1993)

    ADS  Google Scholar 

  72. Kamarpour, M., Sobol, O.: Magnetogenesis in natural inflation model. Ukr. J. Phys. 63(8), 673 (2018). https://doi.org/10.15407/ujpe63.8.673

    Article  Google Scholar 

  73. Lyth, D.H., Seery, D.: Classicality of the primordial perturbations. Phys. Lett. B 662, 309 (2008). https://doi.org/10.1016/j.physletb.2008.03.010

    Article  ADS  Google Scholar 

  74. Sobol, O.O., Lysenko, A.V., Gorbar, E.V., Vilchinskii, S.I.: Gradient expansion formalism for magnetogenesis in the kinetic coupling model. Phys. Rev. D 102, 123512 (2020). (https://arxiv.org/abs/2010.13587)

    ADS  MathSciNet  Google Scholar 

  75. Sobol, O.O., Gorbar, E.V., Kamarpour, M., Vilchinskii, S.I.: Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018). https://doi.org/10.1103/PhysRevD.98.063534. arXiv: 1807.09851 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  76. Fujita, T., Yokoyama, J.: Fermionic Schwinger effect and induced current in de Sitter space. J. Cosmol. Astropart. Phys. 07, 010 (2016)

    MathSciNet  Google Scholar 

  77. Fröb, M.B., Gariga, J., Kano, S., Sasaki, M., Soda, J., Tanaka, T., Vilenkin, A.: Schwinger effect in de Sitter space. Astropart. Phys. 04, 009 (2014). arXiv:1401.4137v2 [hep-th]

  78. Ade, P.A.R., et al.: BICEP / Keck XIII: improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season. arXiv:2110.00483

  79. Tristram, M., et al.: Improved limits on the tensor-to-scalar ratio using BICEP and Planck. arXiv:2112.07961

  80. Kamarpour, M.: Magnetogenessis by non-minimal coupling to gravity in Higgs inflation model. Ann. Phys. 428, 168459 (2021)

    MathSciNet  MATH  Google Scholar 

  81. Kamarpour, M.: Magnetogenesis in Higgs inflation model. Gen. Relativ. Gravit. (2021). https://doi.org/10.1007/s10714-021-02824-0

    Article  MathSciNet  MATH  Google Scholar 

  82. Kamarpour, M.: Influence of the Schwinger effect on radiatively corrected Higgs inflationary magnetogenesis. Gen. Relativ. Gravit. 54, 32 (2022). https://doi.org/10.1007/s10714-022-02920-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express their gratitude to S. Vilchinskii, E.V. Gorbar, and O. Sobol for their valuable insights and discussions during the preparation of this manuscript. Special thanks are also extended to O. Sobol for his assistance in creating the figures presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Kamarpour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarpour, M. The Schwinger effect and natural inflationary magnetogenesis. Gen Relativ Gravit 55, 27 (2023). https://doi.org/10.1007/s10714-023-03081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03081-z

Keywords

Navigation