Skip to main content
Log in

Weiss variation for general boundaries

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Weiss variation of the Einstein-Hilbert action with an appropriate boundary term has been studied for general boundary surfaces; the boundary surfaces can be spacelike, timelike, or null. To achieve this we introduce an auxiliary reference connection and find that the resulting Weiss variation yields the Einstein equations as expected, with additional boundary contributions. Among these boundary contributions, we obtain the dynamical variable and the associated conjugate momentum, irrespective of the spacelike, timelike or, null nature of the boundary surface. We also arrive at the generally non-vanishing covariant generalization of the Einstein energy-momentum pseudotensor. We study this tensor in the Schwarzschild geometry and find that the pseudotensorial ambiguities translate into ambiguities in the choice of coordinates on the reference geometry. Moreover, we show that from the Weiss variation, one can formally derive a gravitational Schrödinger equation, which may, despite ambiguities in the definition of the Hamiltonian, be useful as a tool for studying the problem of time in quantum general relativity. Implications have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The connection between \(B_{1}\), the GHY boundary term and the null boundary term can be found in [16].

  2. It is worth noting that a similar approach was originally proposed in [19] (in that case the subtraction term was constructed from a flat connection) and employed in a simplified proof of the positive energy theorem [20].

  3. Such a quantity was previously obtained in [17] for a flat reference connection and in [21] for a general metric compatible reference connection.

  4. Alternatively, if one chooses \(\xi ^\mu \) to be a Killing vector with respect to a reference geometry, then for \(\chi _\mu :=\eta _{\mu \nu } \xi ^\nu \), one may write \({\bar{\nabla }}_{(\mu } \xi _{\nu )}=0\). It follows that \({\bar{\nabla }}_\alpha \xi ^\beta = g^{\tau \beta } ({\bar{\nabla }}_\alpha \chi _\tau - C_{\alpha \sigma \tau } \,\xi ^\sigma )\), so that (making use of \(\Sigma ^{\mu \alpha \beta } = \Sigma ^{\mu \beta \alpha }\)), one may write \(\Sigma ^{\mu \alpha }{_\beta } \, {\bar{\nabla }}_\alpha \xi ^\beta = - \Sigma ^{\mu \alpha \sigma } C_{\alpha \beta \sigma } \,\xi ^\beta \).

  5. For a covariantly constant vector \(\xi ^\mu \) with respect to a flat connection \({\bar{\nabla }}_\alpha \), one has \({\bar{\nabla }}_\alpha \xi ^\beta = 0\). In this case, one can trivially subtract \(\Sigma ^{(\mu \alpha )}{_\beta }{\bar{\nabla }}_\alpha \xi ^\beta =0\) from the boundary term in Eq. (110) and perform an integration by parts (eliminating a term using Eq. (99) and the identity \({{{\bar{\nabla }}}}_\sigma {{{\bar{\nabla }}}}_{\nu } a^{[\sigma \nu ]}={\bar{R}}_{\sigma \nu } a^{[\sigma \nu ]}=0\)) to obtain the boundary integrand \(({\Delta \lambda }/{2 \kappa })\left[ 2 \kappa {\bar{T}}{^\mu }{_\beta }- {_E}\Theta {^\mu }{_\beta }+\sqrt{\eta /g}{\bar{\nabla }}_\alpha (\sqrt{g/\eta } \, \Sigma ^{[\mu \alpha ]}{_\beta })\right] \xi ^\beta \).

  6. This is a nontrivial matter, as the operator \({{\hat{P}}}_{\alpha \beta }\) corresponds to a functional derivative operator acting on the amplitude. Multiple factors of \(P_{\alpha \beta }\) in the classical Hamiltonian correspond to multiple functional derivatives of the amplitude, which requires regularization [60, 62]. The regularization of such operators is an open issue [63]; see [64] for a recent proposal.

References

  1. York, J.W., Jr.: Phys. Rev. Lett. 28, 1082 (1972)

    Article  ADS  Google Scholar 

  2. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2752 (1977)

    Article  ADS  Google Scholar 

  3. Charap, J.M., Nelson, J.E.: J. Phys. A 16, 1661 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. Dyer, E., Hinterbichler, K.: Phys. Rev. D 79, 024028 (2009). arXiv:0809.4033 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  5. Padmanabhan, T.: Mod. Phys. Lett. A 29, 1450037 (2014)

    Article  ADS  Google Scholar 

  6. Parattu, K., Chakraborty, S., Majhi, B.R., Padmanabhan, T.: Gen. Relativ. Gravit. 48, 94 (2016). arXiv:1501.01053 [gr-qc]

    Article  ADS  Google Scholar 

  7. Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Phys. Rev. D 94, 084046 (2016). arXiv:1609.00207 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. Feng, J.C., Matzner, R.A.: Gen. Relativ. Gravit 50, 99 (2018). arXiv:1708.04489 [gr-qc]

    Article  ADS  Google Scholar 

  9. Weiss, P.: Proc. R. Soc. Lond. A 156, 192 (1936)

    Article  ADS  Google Scholar 

  10. Sudarshan, E., Mukunda, N.: Classical Dynamics: A Modern Perspective. Krieger, R.E (1983)

    MATH  Google Scholar 

  11. Matzner, R.A., Shepley, L.C.: Classical Mechanics. Prentice Hall, Upper Saddle River, NJ (1991)

    MATH  Google Scholar 

  12. Belinfante, F.: Physica 7, 449 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  13. Rosenfeld, L.: Roy. Belg. Memoirs de Classes de Science 18, 063504 (1940)

    Google Scholar 

  14. Feng, J.C., Gasperín, E., Williams, J.L.: Phys. Rev. D 100, 124034 (2019). arXiv:1911.04354 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Chakraborty, S.: Fundam. Theor. Phys. 187, 43 (2017). arXiv:1607.05986 [gr-qc]

    Article  Google Scholar 

  16. Parattu, K., Chakraborty, S., Padmanabhan, T.: Eur. Phys. J. C 76, 129 (2016). arXiv:1602.07546 [gr-qc]

    Article  ADS  Google Scholar 

  17. Rosen, N.: Phys. Rev. 57, 147 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  18. Papapetrou, A.: Proc. Roy. Irish Acad. A 52, 11 (1948)

    MathSciNet  Google Scholar 

  19. Isenberg, J., Nester, J.: Canonical Gravity. In: General Relativity and Gravitation. Vol. 1. One hundred years after the birth of Albert Einstein. Edited by A. Held. New York, Vol. 1 (Plenum, New York, 1980) p. 23

  20. Nester, J.A.: Phys. Lett. A 83, 241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lynden-Bell, D., Katz, J., Bičák, J.: Monthly Notices of the Royal Astronomical Society 272, 150 (1995), https://academic.oup.com/mnras/article-pdf/272/1/150/2897664/mnras272-0150.pdf

  22. Harada, J.: Phys. Rev. D 101, 024053 (2020). arXiv:2001.06990 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  23. Beltrán Jiménez, J., Heisenberg, L., Iosifidis, D., Jiménez-Cano, A., Koivisto, T.S.: Phys. Lett. B 805, 135422 (2020). arXiv:1909.09045 [gr-qc]

    Article  MathSciNet  Google Scholar 

  24. Petrov, A.N., Pitts, J.B.: Space, Time and Fundamental Interactions, 66, (2019). arXiv:2004.10525 [gr-qc]

  25. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, Reading, MA (2004)

    MATH  Google Scholar 

  26. Chakraborty, S., Padmanabhan, T.: Phys. Rev. D 92, 104011 (2015). arXiv:1508.04060 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. Padmanabhan, T.: Gen. Relativ. Gravit. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

    Article  ADS  Google Scholar 

  28. Chakraborty, S., Dey, R.: Phys. Lett. B 786, 432 (2018). arXiv:1806.05840 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  29. Parattu, K., Majhi, B.R., Padmanabhan, T.: Phys. Rev. D 87, 124011 (2013). arXiv:1303.1535 [gr-qc]

    Article  ADS  Google Scholar 

  30. Jubb, I., Samuel, J., Sorkin, R., Surya, S.: Class. Quantum Gravity 34, 065006 (2017). arXiv:1612.00149 [gr-qc]

    Article  ADS  Google Scholar 

  31. Katz, J., Bičák, J., Lynden-Bell, D.: Phys. Rev. D 55, 5957 (1997). arXiv:gr-qc/0504041

    Article  ADS  MathSciNet  Google Scholar 

  32. Brown, J.D., Lau, S.R., York, J.W., Jr.: Ann. Phys. 297, 175 (2002). arXiv:gr-qc/0010024

    Article  ADS  Google Scholar 

  33. Brown, J.D., York, J.W., Jr.: Phys. Rev. D 47, 1407 (1993). arXiv:gr-qc/9209012

    Article  ADS  MathSciNet  Google Scholar 

  34. Brady, P.R., Droz, S., Israel, W., Morsink, S.M.: Class. Quantum Gravity 13, 2211 (1996). arXiv:gr-qc/9510040

    Article  ADS  Google Scholar 

  35. Torre, C.G.: Class. Quantum Gravity 3, 773 (1986)

    Article  ADS  Google Scholar 

  36. d’Inverno, R.A., Smallwood, J.: Phys. Rev. D 22, 1233 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  37. Pauli, W.: Theory of Relativity. Pergamon Press, London (1958)

    MATH  Google Scholar 

  38. Cai, R.-G., Yang, X.-Y., Zhao, L.: On the energy of gravitational waves. (2021), arXiv:2109.06864 [gr-qc]

  39. Freud, P.: Ann. Math. 40, 417 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  40. Chen, C.-M., Liu, J.-L., Nester, J.M.: Int. J. Mod. Phys. D 27, 1847017 (2018). arXiv:1805.07692 [gr-qc]

    Article  ADS  Google Scholar 

  41. Chen, C.-M., Liu, J.-L., Nester, J.M.: Gen. Relativ. Gravit. 50, 158 (2018). arXiv:1811.05640 [gr-qc]

    Article  Google Scholar 

  42. Wang, M.-T., Yau, S.-T.: Phys. Rev. Lett. 102, 021101 (2009). arXiv:0804.1174 [gr-qc]

    Article  ADS  Google Scholar 

  43. Nakanishi, N.: Progress of Theoretical Physics 75, 1351 (1986), https://academic.oup.com/ptp/article-pdf/75/6/1351/5338129/75-6-1351.pdf

  44. Bičák, J., Katz, J.: Czech J. Phys. 55, 105–118 (2005). arXiv:gr-qc/0503018

    Article  ADS  Google Scholar 

  45. Liu, Q.-H.: Journal of Mathematical Physics 39, 6086 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  46. Petrov, A.N., Katz, J.: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458, 319–337 (2002). arXiv:gr-qc/9911025

    Article  ADS  Google Scholar 

  47. Peres, A.: Il Nuovo Cimento 26, 53 (1962)

    Article  ADS  Google Scholar 

  48. Bergmann, P.G.: Phys. Rev. 144, 1078 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  49. Komar, A.: Phys. Rev. 153, 1385 (1967)

    Article  ADS  Google Scholar 

  50. Komar, A.: Phys. Rev. 170, 1195 (1968)

    Article  ADS  Google Scholar 

  51. Gerlach, U.H.: Phys. Rev. 177, 1929 (1969)

    Article  ADS  Google Scholar 

  52. Komar, A.: Phys. Rev. D 1, 1521 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  53. Komar, A.: Phys. Rev. D 4, 923 (1971)

    Article  ADS  Google Scholar 

  54. Goldberg, J.N., Robinson, D.C.: Phys. Rev. D 50, 6338 (1994). arXiv:gr-qc/9405030

    Article  ADS  MathSciNet  Google Scholar 

  55. Goldberg, J.N.: Phys. Rev. D 54, 4997 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  56. Rovelli, C.: “Dynamics without Time for Quantum Gravity: Covariant Hamiltonian Formalism and Hamilton-Jacobi Equation on the Space G”, In Lecture Notes in Physics, Berlin Springer Verlag, Vol. 633, edited by H.-T. Elze ( Springer, 2004) p. 36, arXiv:gr-qc/0207043

  57. Salisbury, D., Renn, J., Sundermeyer, K.: Int. J. Mod. Phys. A 31, 1650014 (2016). [Erratum: Int. J. Mod. Phys. A 33, 1892001 (2018)], arXiv:1508.01277 [gr-qc]

  58. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In Battelle Rencontres, 1967 Lectures in Mathematics and Physics, edited by DeWitt, C., Wheeler, J. (W.A. Benjamin, New York, U.S.A., 1968) 242–307

  59. Salisbury, D.: The Earlier History. (2021), arXiv:2106.11894 [physics.hist-ph]

  60. DeWitt, B.S.: Phys. Rev. 160, 1113 (1967)

    Article  ADS  Google Scholar 

  61. Feng, J.C., Matzner, R.A.: Phys. Rev. D 96, 106005 (2017). arXiv:1708.07001 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  62. Kiefer, C.: Quantum Gravity. International Series of Monographs on Physics. (Oxford University Press, 2012)

  63. Kiefer, C.: Space, Time, Matter in Quantum Gravity. In One Hundred Years of Gauge Theory (Springer, 2020) 199–215, arXiv:2004.03174 [gr-qc]

  64. Feng, J.C.: Volume average regularization for the Wheeler-DeWitt equation. Physical Review D 98 (2018), https://doi.org/10.1103/physrevd.98.026024. arXiv:1802.08576 [gr-qc]

  65. Rosabal, J.A.: Quantum Gravity on a Manifold with boundaries: Schrödinger Evolution and Constraints. Eur. Phys. J. C 82, 589 (2022). https://doi.org/10.1140/epjc/s10052-022-10543-2

    Article  ADS  Google Scholar 

  66. Hayward, G., Wong, K.: Phys. Rev. D 46, 620 (1992), [Addendum: Phys. Rev. D 47, 4778–4779 (1993)]

  67. Chakraborty, S., Parattu, K., Padmanabhan, T.: Gen. Relativ. Gravit. 49, 121 (2017). arXiv:1703.00624 [gr-qc]

    Article  ADS  Google Scholar 

  68. Chakraborty, S., Parattu, K.: Gen. Relativ. Gravit. 51, 23 (2019). [Erratum: Gen. Relativ. Gravit. 51, 47 (2019)], arXiv:1806.08823 [gr-qc]

  69. Martín-García, J.M.: “ xAct: tensor computer algebra.” (2020), http://www.xact.es/

Download references

Acknowledgements

Research of S.C. is funded by the INSPIRE Faculty fellowship from the DST, Government of India (Reg. No. DST/INSPIRE/04/2018/000893) and by the Start-Up Research Grant from SERB, DST, Government of India (Reg. No. SRG/2020/000409). J.C.F. is grateful for helpful discussions with Vincenzo Vitagliano, Stefano Vignolo, Sante Carloni, and Richard Matzner. J.C.F. also thanks DIME at the University of Genoa for hosting a visit during which part of this work was performed, and acknowledges financial support from FCT - Fundação para a Ciência e Tecnologia of Portugal Grant No. PTDC/MAT-APL/30043/2017 and Project No. UIDB/00099/2020. Some of the calculations were performed using the xAct package [69] for Mathematica. This manuscript has no available data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: In Memory of Professor T Padmanabhan.

Appendices

Appendix A: Variation of bulk integrals

Here, we work out the variation of bulk integrals when boundary displacements are included. Consider a bulk integral of the form:

$$\begin{aligned} I = \int _U d^4 x \, F . \end{aligned}$$
(A1)

The variation of the integral takes the form:

$$\begin{aligned} \begin{aligned} \delta I&= \int _{U^\prime } d^4 x \, F^\prime - \int _U d^4 x \, F - {\mathcal {O}}(2) \\&= \int _U d^4 x \, \delta F + \int _{\partial U} d {\underline{\Sigma }}_\mu \, \delta x^\mu \, F . \end{aligned} \end{aligned}$$
(A2)

The second integral in the last equality describes the contribution from the boundary variation; one can see this by noting that \(d {\underline{\Sigma }}_\mu \, \delta x^\mu \) corresponds to the volume swept out by the variation of the boundary induced by the displacement \(\delta x^\mu \). The surface element \(d {\bar{\Sigma }}_\mu \) is defined as

$$\begin{aligned} d {\underline{\Sigma }}_\mu := \frac{1}{3!} \epsilon _{\mu \alpha \beta \gamma } \, dx^\alpha \wedge dx^\beta \wedge dx^\gamma . \end{aligned}$$
(A3)

One can (by way of the divergence theorem) convert Eq. (A2) to a bulk integral of the form:

$$\begin{aligned} \delta I = \int _U d^4 x \left[ \delta F + \partial _\mu (F \, \delta x^\mu ) \right] . \end{aligned}$$
(A4)

Defining

$$\begin{aligned} f:=F/\sqrt{-g} , \end{aligned}$$
(A5)

one may write:

$$\begin{aligned} \delta I = \int _U d^4 x \left[ \sqrt{-g} \left( \delta f - \frac{1}{2} g_{\mu \nu } \delta g^{\mu \nu } f \right) + \partial _\mu (\sqrt{-g} f \delta x^\mu ) \right] . \end{aligned}$$
(A6)

If f is a scalar, one may write this as:

$$\begin{aligned} \begin{aligned} \delta I&= \int _U d^4 x \, \sqrt{-g} \left[ \delta f - \frac{1}{2} g_{\mu \nu } \delta g^{\mu \nu } f + {\bar{\nabla }}_\mu (f \delta x^\mu ) \right] \\&= \int _U d^4 x \, \sqrt{-g} \left[ \delta f - \frac{1}{2} g_{\mu \nu } \delta g^{\mu \nu } f \right] + \int _{\partial U} d \Sigma _\mu \, \delta x^\mu \, f . \end{aligned} \end{aligned}$$
(A7)

where \(d \Sigma _\mu := \sqrt{-g} \, d {\underline{\Sigma }}_\mu \).

Appendix B: Variation of covariant divergence

Here, we consider the variation of a boundary integral of the following form:

$$\begin{aligned} B = \int _U d^4 x \sqrt{-g} \left( {\nabla }_\mu V^\mu \right) , \end{aligned}$$
(B1)

where \(V^\mu \) are the components of some vector field. First, we consider the variation of the divergence itself:

$$\begin{aligned} \begin{aligned} \delta [ {\nabla }_\mu V^\mu ]&= {\nabla }_\mu \delta V^\mu + V^\nu \delta {\Gamma }{^\mu }_{\nu \mu } \\&= {\nabla }_\mu \delta V^\mu + \frac{1}{2}V^\nu [ g^{\mu \sigma } {\nabla }_\nu \delta g_{\sigma \mu } ] \\&= {\nabla }_\sigma \delta V^\sigma + \frac{1}{2} g_{\mu \nu } [{\nabla }_\sigma V^\sigma ] \delta g^{\mu \nu } \\&\quad - \frac{1}{2} g_{\mu \nu } {\nabla }_\sigma [ V^\sigma \delta g^{\mu \nu }] . \end{aligned} \end{aligned}$$
(B2)

This result may be combined with the variation of the volume element to obtain:

$$\begin{aligned} \begin{aligned} \delta B =&\int _U d^4 x \sqrt{-g} \, {\nabla }_\sigma \left[ \delta V^\sigma - \frac{1}{2} \, V^\sigma \, g_{\mu \nu } \, \delta g^{\mu \nu } \right] \\&+ \int _{\partial U} \, d\Sigma _\mu \delta x^\mu \, {\nabla }_\nu V^\nu , \end{aligned} \end{aligned}$$
(B3)

which can be rewritten:

$$\begin{aligned} \begin{aligned} \delta B =&\int _U d^4 x \sqrt{-g} \, {\nabla }_\sigma \left[ \delta V^\sigma - \frac{1}{2} \, V^\sigma \, g_{\mu \nu } \, \delta g^{\mu \nu } \right] \\&+ \int _{\partial U} \, i_{\delta x} \left[ {\nabla }_\nu V^\nu \, \omega \right] , \end{aligned} \end{aligned}$$
(B4)

where the last term comes from the dispacement \(\delta x^\mu =\Delta \lambda \, \xi ^\mu \) of the boundary, where the volume form \(\omega \) is defined:

$$\begin{aligned} \omega := \frac{\sqrt{-g}}{4!} \, \epsilon _{\alpha \beta \mu \nu } \, dx^\alpha \wedge dx^\beta \wedge dx^\mu \wedge dx^\nu . \end{aligned}$$
(B5)

The interior product of the volume form is:

$$\begin{aligned} i_{V}\omega := \frac{\sqrt{-g}}{3!} \, \epsilon _{\alpha \beta \mu \nu } \, V^\alpha \, dx^\beta \wedge dx^\mu \wedge dx^\nu = d\Sigma _\sigma \, V^\sigma . \end{aligned}$$
(B6)

Now write:

$$\begin{aligned} \begin{aligned} \Delta V^\sigma&= \delta V^\sigma + \Delta \lambda \, \pounds _\xi V^\sigma \\ \Delta g^{\mu \nu }&= \delta g^{\mu \nu } + \Delta \lambda \, \pounds _\xi g^{\mu \nu } , \end{aligned} \end{aligned}$$
(B7)

which yields:

$$\begin{aligned} \begin{aligned} \delta B =&\int _{\partial U} d\Sigma _\sigma \left[ \Delta V^\sigma - \frac{1}{2} \, V^\sigma \, g_{\mu \nu } \, \Delta g^{\mu \nu } \right] \\&- \Delta \lambda \int _{\partial U} \, d\Sigma _\sigma \left[ \pounds _\xi V^\sigma - \frac{1}{2} \, V^\sigma \, g_{\mu \nu } \, \pounds _\xi g^{\mu \nu } \right] \\&+ \int _{\partial U} \, i_{\delta x} \left[ {\nabla }_\nu V^\nu \, \omega \right] . \end{aligned} \end{aligned}$$
(B8)

This can be written as (using the identity \(d i_V \omega =\nabla _\mu V^\mu \omega \)):

$$\begin{aligned} \begin{aligned} \delta B =&\int _{\partial U} d\Sigma _\sigma \left[ \Delta V^\sigma - \frac{1}{2} \, V^\sigma \, g_{\mu \nu } \, \Delta g^{\mu \nu } \right] \\&- \Delta \lambda \int _{\partial U} \, \pounds _\xi i_V \omega + \Delta \lambda \int _{\partial U} \, i_{\xi } d i_V \omega . \end{aligned} \end{aligned}$$
(B9)

From Cartan’s magic formula \(di+id=\pounds \), one can write:

$$\begin{aligned} \pounds _\xi i_V \omega = d i_\xi i_V \omega + i_\xi d i_V \omega . \end{aligned}$$
(B10)

After a cancellation, one finds that:

$$\begin{aligned} \begin{aligned} \delta B =&\int _{\partial U} d\Sigma _\sigma \left[ \Delta V^\sigma - \frac{1}{2} V^\sigma g_{\mu \nu } \Delta g^{\mu \nu } \right] - \Delta \lambda \int _{\partial U} d i_\xi i_V \omega . \end{aligned} \end{aligned}$$
(B11)

The term proportional to \(\Delta \lambda \) on the right-hand side of Eq. (B11), being the exterior derivative of a (two-)form, vanishes when integrated over \(\partial U\) via the boundary of a boundary principle, but we choose to keep it for now. The second interior product takes the form:

$$\begin{aligned} i_{\xi }i_{V}\omega := \frac{\sqrt{-g}}{2!} \, \epsilon _{\alpha \beta \mu \nu } \, V^\alpha \, \xi ^\beta \wedge dx^\mu \wedge dx^\nu . \end{aligned}$$
(B12)

The exterior derivative takes the form:

$$\begin{aligned} \begin{aligned} di_{\xi }i_{V}\omega&:= \frac{1}{3!} \partial _\sigma \left( \sqrt{-g} \, \epsilon _{\alpha \beta \mu \nu } \, V^\alpha \, \xi ^\beta \right) dx^\sigma \wedge dx^\mu \wedge dx^\nu \\&\,= \frac{1}{3!} \, \partial _\sigma \left( \sqrt{-g} \, \epsilon _{\alpha \beta \mu \nu } \, V^{[\alpha } \, \xi ^{\beta ]}\right) dx^\sigma \wedge dx^\mu \wedge dx^\nu . \end{aligned} \end{aligned}$$
(B13)

We recognize the quantity in the bracket as the Hodge star of the antisymmetric tensor \(V^{[\alpha } \, \xi ^{\beta ]}\). Now consider the following expression for the antisymmetric tensor \(A^{\mu \nu }\):

$$\begin{aligned} \begin{aligned} d{^\star }A&:= \frac{1}{3!} \partial _{[\sigma } \left( {^\star }A_{\mu \nu ]} \right) dx^\sigma \wedge dx^\mu \wedge dx^\nu , \end{aligned} \end{aligned}$$
(B14)

where \({^\star }A_{\mu \nu } = \sqrt{-g} \epsilon {_{\mu \nu \alpha \beta }} \, A^{\alpha \beta }\) are the components of the Hodge dual of the tensor \(A^{\mu \nu }\). In a four-dimensional Lorentzian manifold, the double dual operator of a 3-form is the identity, so one may write:

$$\begin{aligned} \begin{aligned} d{^\star }A&= \frac{1}{3!} \epsilon _{\sigma \mu \nu \tau } \, \epsilon ^{\tau \alpha \beta \gamma } \partial _{[\alpha } \left( {^\star }A_{\beta \gamma ]} \right) dx^\sigma \wedge dx^\mu \wedge dx^\nu \\&= - \epsilon ^{\tau \alpha \beta \gamma } \partial _{\alpha } \left( {^\star }A_{\beta \gamma } \right) d{\underline{\Sigma }}_\tau \\&= 2 \partial _{\alpha } \left( \sqrt{-g} A^{\tau \alpha } \right) d{\underline{\Sigma }}_\tau \end{aligned} \end{aligned}$$
(B15)

It follows that the expression in Eq. (B13) can be rewritten:

$$\begin{aligned} \begin{aligned} di_{\xi }i_{V}\omega&:= 2 \partial _{\alpha } \left( \sqrt{-g} V^{[\sigma } \, \xi ^{\alpha ]}\right) d{\underline{\Sigma }}_\sigma , \end{aligned} \end{aligned}$$
(B16)

so that:

$$\begin{aligned} \begin{aligned} \delta B =&\int _{\partial U} d\Sigma _\sigma \left[ \Delta V^\sigma - \frac{1}{2} V^\sigma g_{\mu \nu } \Delta g^{\mu \nu } \right] \\&- 2 \Delta \lambda \int _{\partial U} \nabla _{\alpha } \left( V^{[\sigma } \, \xi ^{\alpha ]}\right) d{\Sigma }_\sigma . \end{aligned} \end{aligned}$$
(B17)

Appendix C: Lie derivative of connection coefficients

The Lie derivative measures the deviation from formal invariance under a diffeomorphism. We consider here a one-parameter diffeomorphism \(x^\prime (\epsilon ,x)\), which to first order in \(\epsilon \), takes the form:

$$\begin{aligned} x^\prime (\epsilon ,x) = x + \epsilon \, \xi (x) + O(\epsilon ^2). \end{aligned}$$
(C1)

To first order in \(\epsilon \), this can be easily inverted to obtain (noting that \(\xi (x^\prime )=\xi (x) + O(\epsilon )\)):

$$\begin{aligned} x(\epsilon ,x^\prime ) = x^\prime - \epsilon \, \xi (x^\prime ) + O(\epsilon ^2), \end{aligned}$$
(C2)

and it follows that:

$$\begin{aligned} \begin{aligned} \frac{\partial {x^\prime }^\mu }{\partial x^\nu }&= \delta {^\mu }{_\nu } + \epsilon \, \frac{\partial \xi ^\mu }{\partial x^\nu } + O(\epsilon ^2) \\ \frac{\partial x^\mu }{\partial {x^\prime }^\nu }&= \delta {^\mu }{_\nu } - \epsilon \, \frac{\partial \xi ^\mu }{\partial {x^\prime }^\nu } + O(\epsilon ^2) . \end{aligned} \end{aligned}$$
(C3)

For a tensor field \(T^{\mu ...}_{\nu ...}(x)\), one can characterize the deviation from formal invariance under the diffeomorphism \(x^\prime (\epsilon ,x)\) in the following way:

$$\begin{aligned} (\pounds _\xi T)^{\mu ...}_{\nu ...}(x):=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon }\left\{ T^{\mu ...}_{\nu ...}(x^\prime (\epsilon ,x))-{T^\prime }^{\mu ...}_{\nu ...} (x^\prime (\epsilon ,x))\right\} , \end{aligned}$$
(C4)

where \({T^\prime }^{\mu ...}_{\nu ...}\) represents the components of the coordinate transformed tensor. The above formula defines the Lie derivative and may be applied directly to the connection coefficients.

To work out the explicit expression for the Lie derivative, first recall the transformation law for connection coefficients:

$$\begin{aligned} {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}=\left[ \frac{\partial {x^\prime }^\gamma }{\partial x^\sigma }\frac{\partial x^\alpha }{\partial {x^\prime }^\mu }\frac{\partial x^\beta }{\partial {x^\prime }^\nu }\right] {\bar{\Gamma }}^\sigma {_{\alpha \beta }} - \frac{\partial x^\alpha }{\partial {x^\prime }^\mu }\frac{\partial x^\beta }{\partial {x^\prime }^\nu } \left[ \frac{\partial ^2 {x^\prime }^\gamma }{\partial x^\alpha \partial x^\beta }\right] . \end{aligned}$$
(C5)

Expanding \({{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}(x^\prime (\epsilon ,x))\) to lowest order in \(\epsilon \) (quantities without arguments are implicitly functions of x),

$$\begin{aligned} \begin{aligned} {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}(x^\prime (\epsilon ,x)) =&~ {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} + \epsilon \, \xi ^\sigma \frac{\partial {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}}{\partial x^\sigma } + O(\epsilon ^2), \end{aligned} \end{aligned}$$
(C6)

and expanding \({{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}(x^\prime (\epsilon ,x))\) to lowest order in \(\epsilon \), we obtain the following expression:

$$\begin{aligned} \begin{aligned} {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}(x^\prime (\epsilon ,x)) =&~ {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} + \epsilon \frac{\partial \xi ^\gamma }{\partial x^\sigma } {\bar{\Gamma }}^\sigma {_{\mu \nu }} - \epsilon \frac{\partial \xi ^\sigma }{\partial x^\mu } {{\bar{\Gamma }}^\prime }{^\gamma }{_{\sigma \nu }} \\&- \epsilon \frac{\partial \xi ^\sigma }{\partial x^\nu } {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \sigma }} - \epsilon \frac{\partial ^2 \xi ^\gamma }{\partial x^\mu \partial x^\nu } + O(\epsilon ^2). \end{aligned} \end{aligned}$$
(C7)

The Lie derivative of the connection coefficients then takes the form:

$$\begin{aligned} \begin{aligned} \pounds _\xi {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} =&~ \xi ^\sigma \frac{\partial {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}}{\partial x^\sigma } - \frac{\partial \xi ^\gamma }{\partial x^\sigma } {\bar{\Gamma }}^\sigma {_{\mu \nu }} + \frac{\partial \xi ^\sigma }{\partial x^\mu } {{\bar{\Gamma }}^\prime }{^\gamma }{_{\sigma \nu }} \\&+ \frac{\partial \xi ^\sigma }{\partial x^\nu } {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \sigma }} + \frac{\partial ^2 \xi ^\gamma }{\partial x^\mu \partial x^\nu }. \end{aligned} \end{aligned}$$
(C8)

Now one might expect \(\pounds _\xi {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }}\) to be covariant. To see that it is in fact covariant, consider the following expression:

$$\begin{aligned} \frac{\partial \xi ^\mu }{\partial x^\nu } = {\bar{\nabla }}_\nu \xi ^\mu - {\bar{\Gamma }}^\mu {_{\nu \tau }} \xi ^\tau , \end{aligned}$$
(C9)

which is just a rewriting of the formula for the covariant derivative \({\bar{\nabla }}_\nu \xi ^\mu \).

One can show that:

$$\begin{aligned} \begin{aligned} \pounds _\xi {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} =&~ \xi ^\sigma [ \partial _\sigma {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} - \partial _\mu {{\bar{\Gamma }}^\prime }{^\gamma }{_{\nu \sigma }} + {\bar{\Gamma }}^\tau {_{\mu \nu }} {{\bar{\Gamma }}^\prime }{^\gamma }{_{\tau \sigma }} \\&+ {{\bar{\Gamma }}^\prime }{^\gamma }{_{\nu \tau }} {\bar{\Gamma }}^\tau {_{\mu \sigma }} - {{\bar{\Gamma }}^\prime }{^\gamma }{_{\tau \nu }} {\bar{\Gamma }}^\tau {_{\mu \sigma }} - {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \tau }} {\bar{\Gamma }}^\tau {_{\nu \sigma }} ]\\&+ {\bar{\nabla }}_\mu ({\bar{\nabla }}_\nu \xi ^\gamma ) + {\bar{\nabla }}_\mu \xi ^\sigma T^\gamma {_{\sigma \nu }}, \end{aligned} \end{aligned}$$
(C10)

where the torsion tensor is \( T^\gamma {_{\mu \nu }}:= {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} - {{\bar{\Gamma }}^\prime }{^\gamma }{_{\nu \mu }}\). One may write:

$$\begin{aligned} {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} = {{\bar{\Gamma }}^\prime }{^\gamma }{_{\nu \mu }} + T^\gamma {_{\mu \nu }}. \end{aligned}$$
(C11)

One can use the above to obtain:

$$\begin{aligned} \begin{aligned} \pounds _\xi {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} =&~ \xi ^\sigma [ \partial _\sigma {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} - \partial _\mu {{\bar{\Gamma }}^\prime }{^\gamma }{_{\sigma \nu }} + {\bar{\Gamma }}^\tau {_{\mu \nu }} {{\bar{\Gamma }}^\prime }{^\gamma }{_{\sigma \tau }} - {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \tau }} {\bar{\Gamma }}^\tau {_{\sigma \nu }}\\&- \partial _\mu T^\gamma {_{\nu \sigma }} + {\bar{\Gamma }}^\tau {_{\mu \nu }} T^\gamma {_{\tau \sigma }} + {\bar{\Gamma }}^\tau {_{\mu \sigma }} T^\gamma {_{\nu \tau }} \\&- {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \tau }} T^\tau {_{\sigma \nu }}] + {\bar{\nabla }}_\mu ({\bar{\nabla }}_\nu \xi ^\gamma ) + {\bar{\nabla }}_\mu \xi ^\sigma T^\gamma {_{\sigma \nu }}, \end{aligned} \end{aligned}$$
(C12)

and upon identifying the curvature and covariant derivative of the torsion tensor, one obtains the result:

$$\begin{aligned} \begin{aligned} \pounds _\xi {{\bar{\Gamma }}^\prime }{^\gamma }{_{\mu \nu }} =&~ {\bar{\nabla }}_\mu {\bar{\nabla }}_\nu \xi ^\gamma + \xi ^\sigma {\bar{R}}{^\gamma }_{\nu \sigma \mu } + {\bar{\nabla }}_\mu \left( \xi ^\sigma T^\gamma {_{\sigma \nu }} \right) . \end{aligned} \end{aligned}$$
(C13)

Appendix D: Divergence expression

Here, we compare the divergences of a tensor with respect to two different metric-compatible connections. First, a useful result is derived for two metric tensors \(g_{\mu \nu }\) and \(\eta _{\mu \nu }\):

$$\begin{aligned} \begin{aligned} \partial _\sigma \left[ \frac{\sqrt{-\eta }}{\sqrt{-g}}\right]&= \frac{\sqrt{-\eta }}{\sqrt{-g}} \left[ \frac{\partial _\sigma \sqrt{-\eta }}{\sqrt{-\eta }} - \frac{\partial _\sigma \sqrt{-g}}{\sqrt{-g}} \right] \\&= - \frac{\sqrt{-\eta }}{\sqrt{-g}} \left[ \Gamma {^\tau }_{\tau \sigma } - {\bar{\Gamma }}{^\tau }_{\tau \sigma } \right] = - \frac{\sqrt{-\eta }}{\sqrt{-g}} \, W{^\tau }_{\tau \sigma } . \end{aligned} \end{aligned}$$
(D1)

For a tensor \(T{^\mu }{_\nu }\) and a scalar field \(\varphi \), one may obtain the following expression (where \({\bar{\nabla }}_\alpha \eta _{\mu \nu } = 0\)):

$$\begin{aligned} \begin{aligned} \nabla _\mu (\varphi \, T{^\mu }{_\nu }) = \,&{\bar{\nabla }}_\mu (\varphi \, T{^\mu }{_\nu }) + \varphi \, W{^\mu }_{\mu \sigma } \, T{^\sigma }{_\nu } - \varphi \, W{^\sigma }_{\mu \nu } \, T{^\mu }{_\sigma } \\ = \,&\varphi \, {\bar{\nabla }}_\mu T{^\mu }{_\nu } + \varphi \, W{^\mu }_{\mu \sigma } \, T{^\sigma }{_\nu } - \varphi \, W{^\sigma }_{\mu \nu } \, T{^\mu }{_\sigma } \\&+ T{^\mu }{_\nu } \, \partial _\mu \varphi . \end{aligned} \end{aligned}$$
(D2)

Now if \(\varphi ={\sqrt{-\eta }}/{\sqrt{-g}}\), one can show that:

$$\begin{aligned} \begin{aligned} {\sqrt{-g}} \, \nabla _\mu \left[ \frac{\sqrt{-\eta }}{\sqrt{-g}} \, T{^\mu }{_\nu }\right] = \,&\sqrt{-\eta } \left( {\bar{\nabla }}_\mu T{^\mu }{_\nu } - W{^\sigma }_{\mu \nu } \, T{^\mu }{_\sigma } \right) . \end{aligned} \end{aligned}$$
(D3)

We now consider the divergence of a current \(k^\mu = \xi ^\tau \, {\tilde{T}}{^\mu }{_\tau }\), where \(\xi ^\mu \) is the dual of a vector field:

$$\begin{aligned} \begin{aligned} \nabla _\sigma k^\sigma = \,&\nabla _\sigma \left( \xi ^\tau \, {\tilde{T}}{^\sigma }{_\tau }\right) \\ = \,&\xi ^\tau \nabla _\sigma {\tilde{T}}{^\sigma }{_\tau } + {\tilde{T}}{^\sigma }{_\tau } \, \nabla _\sigma \xi ^\tau \\ = \,&\xi ^\tau \nabla _\sigma {\tilde{T}}{^\sigma }{_\tau } + {\tilde{T}}{^\sigma }{_\tau } \, {\bar{\nabla }}_\sigma \xi ^\tau + {\tilde{T}}{^\sigma }{_\nu } \, W{^\nu }_{\sigma \tau } \, \xi ^\tau \\ = \,&\left( \nabla _\sigma {\tilde{T}}{^\sigma }{_\tau } + {\tilde{T}}{^\sigma }{_\nu } \, W{^\nu }_{\sigma \tau } \right) \xi ^\tau \ + {\tilde{T}}{^\sigma }{_\tau } \, {\bar{\nabla }}_\sigma \xi ^\tau . \end{aligned} \end{aligned}$$
(D4)

Upon setting \({\tilde{T}}^{\mu \nu } = \varphi \, T^{\mu \nu }\), and substituting Eq. (D2):

$$\begin{aligned} \begin{aligned} \nabla _\sigma (\varphi \, \xi ^\tau \, {T}{^\sigma }{_\tau }) = \,&\xi ^\tau \left[ \nabla _\sigma (\varphi \, {T}{^\sigma }{_\tau } ) + \varphi \, {T}{^\sigma }{_\nu } \, W{^\nu }_{\sigma \tau } \right] \\&+ \varphi \, {T}{^\sigma }{_\tau } \, {\bar{\nabla }}_\sigma \xi ^\tau \\ = \,&\xi ^\tau \biggl [ \varphi \, {\bar{\nabla }}_\sigma {T}{^\sigma }{_\tau } + T{^\mu }{_\tau } \, \partial _\mu \varphi + \varphi \, W{^\sigma }_{\sigma \mu } \, T{^\mu }{_\tau } \biggr ]\\&+ \varphi \, {T}{^\sigma }{_\tau } \, {\bar{\nabla }}_\sigma \xi ^\tau , \end{aligned} \end{aligned}$$
(D5)

and setting \(\varphi ={\sqrt{-\eta }}/{\sqrt{-g}}\), we obtain the following result:

$$\begin{aligned} \begin{aligned} \nabla _\sigma \left[ \frac{\sqrt{-\eta }}{\sqrt{-g}} \, \xi ^\tau \, {T}{^\sigma }{_\tau } \right] = \frac{\sqrt{-\eta }}{\sqrt{-g}} \biggl [&{\bar{\nabla }}_\sigma {T}{^\sigma }{_\tau } \, \xi ^\tau + {T}{^\sigma }{_\tau } \, {\bar{\nabla }}_\sigma \xi ^\tau \biggr ]. \end{aligned} \end{aligned}$$
(D6)

Alternatively, defining the tensor \(S^{\sigma \mu } = \varphi \, T^{\sigma \mu }\), the above may be rewritten:

$$\begin{aligned} \begin{aligned} \nabla _\sigma \left[ \xi ^\tau \, {S}{^\sigma }{_\tau } \right] = \,&\frac{\sqrt{-\eta }}{\sqrt{-g}} \, \xi ^\tau \, {\bar{\nabla }}_\sigma \left( \frac{\sqrt{-g}}{\sqrt{-\eta }} {S}{^\sigma }{_\tau } \right) + {S}{^\sigma }{_\tau } \, {\bar{\nabla }}_\sigma \xi ^\tau . \end{aligned} \end{aligned}$$
(D7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J.C., Chakraborty, S. Weiss variation for general boundaries. Gen Relativ Gravit 54, 67 (2022). https://doi.org/10.1007/s10714-022-02953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02953-0

Keywords

Navigation