Skip to main content
Log in

Type D conformal initial data

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

For a vacuum initial data set of the Einstein field equations it is possible to carry out a conformal rescaling or conformal compactification of the data giving rise to an initial data set for the Friedrich vacuum conformal equations. When will the data development with respect to the conformal equations of this set be a conformal extension of a type D solution? In this work we provide a set of necessary and sufficient conditions on a set of initial data for the conformal equations that guarantees that the data development of the conformal equations has a subset that is conformal to a vacuum type D solution of the Einstein’s equations. In particular we find the conditions under which this vacuum solution corresponds to the Kerr solution. Using our results we are able to show that there are no obstructions to extend the Petrov type of the physical spacetime to the unphysical spacetime if the conformal data are hyperboloidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The reasoning of [24] was formulated for the case with \(\lambda =0\) but it still holds when \(\lambda \ne 0\).

References

  1. Andersson, L., Chruściel, P.T.: Hyperboloidal cauchy data for vacuum einstein equations and obstructions to smoothness of null infinity. Phys. Rev. Lett. 70, 2829–2832 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Chruściel, P.T.: On “hyperboloidal” Cauchy data for vacuum einstein equations and obstructions to smoothness of Scri. Commun. Math. Phys. 161(3), 533–568 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Andersson, L., Chruściel, P.T., Friedrich, H.: On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Commun. Math. Phys. 149(3), 587–612 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Beig, R., Chrusciel, P.T.: Killing initial data. Class. Quantum Gravity 14, A83–A92 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carranza, D.A., Kroon, J.A.V.: Construction of anti-de Sitter-like spacetimes using the metric conformal Einstein field equations: the vacuum case. Class. Quantum Gravity 35(24), 245006 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Carranza, D.A., Kroon, J.A.V.: Killing boundary data for anti-de Sitter-like spacetimes. Class. Quantum Gravity 35(15), 155011 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chrusciel, P.T., Delay, E.: Existence of non-trivial, vacuum, asymptotically simple spacetimes. Class. Quantum Gravity 19(12), 3389–3389 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Coll, B.: On the evolution equations for Killing fields. J. Math. Phys. 18(10), 1918–1922 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Curry, S.N., Gover, A.R.: An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity. In: Daudé, T. (ed.) Asymptotic Analysis in General Relativity. London Mathematical Society Lecture Note Series, vol. 443, pp. 86–170. Cambridge University Press, Cambridge (2018)

    Chapter  Google Scholar 

  10. Cutler, C., Wald, R.M.: Existence of radiating Einstein–Maxwell solutions which are \(C^{\infty }\) on all of \(I^{+}\) and \(I\)\$. Class. Quantum Gravity 6(4), 453–466 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ferrando, J.J., Morales, J.A., Sáez, J.A.: Covariant determination of the Weyl tensor geometry. Class. Quantum Gravity 18(22), 4939–4959 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ferrando, J.J., Sáez, J.A.: Type D vacuum solutions: a new intrinsic approach. Gen. Relativ. Gravit. 46(4), 1–19 (2014)

    Article  MATH  Google Scholar 

  13. Ferrando, J.J., Sáez, J.A.: An intrinsic characterization of the Kerr metric. Class. Quantum Gravity 26, 07501313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frauendiener, J.: Conformal infinity. Living Rev. Relativ. 3(1), 4 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Friedrich, H.: Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3(1), 101–117 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107(4), 587–609 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations. J. Differ. Geom. 34(2), 275–345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Friedrich, H.: Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys. 17, 125–184 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Friedrich, H.: On the regular and the asymptotic characteristic initial value problem for the Einstein’s vacuum field equations. Proc. R. Soc. A 375, 169–184 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Friedrich, H.: The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system. Proc. R. Soc. A 378, 401–421 (1981)

    ADS  MATH  Google Scholar 

  21. Friedrich, H.: Cauchy problems for the conformal vacuum field equations in general relativity. Commun. Math. Phys. 91(4), 445–472 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Friedrich, H.: Conformal geodesics on vacuum space-times. Commun. Math. Phys. 235(3), 513–543 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. García-Parrado, A.: Dynamical laws of superenergy in general relativity. Class. Quantum Gravity 25(1), 01500626 (2008)

    MathSciNet  MATH  Google Scholar 

  24. García-Parrado, A.: Vacuum type D initial data. Class. Quantum Gravity 33(17), 17500516 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Gasperín, E., Kroon, J.A.V.: Perturbations of the asymptotic region of the Schwarzschild–de Sitter spacetime. Ann. Henri Poincaré 18(5), 1519–1591 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. García-Parrado, A., Gasperín, E., Kroon, J.A.V.: Conformal geodesics in spherically symmetric vacuum spacetimes with cosmological constant. Class. Quantum Gravity 35(4), 045002 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. García-Parrado, A.: Corrigendum: vacuum type D initial data (2016 Class. Quantum Gravity 33, 175005). Class. Quantum Gravity 35(7), 079501 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hall, G.: Symmetries and Curvature Structure in General Relativity. World Scientific Lecture Notes in Physics. World Scientific Publishing Company, Singapore (2004)

    Book  Google Scholar 

  29. Kánnár, J.: Hyperboloidal initial data for the vacuum Einstein equations with cosmological constant. Class. Quantum Gravity 13(11), 3075 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kroon, J.A.V.: Conformal Methods in General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  31. Lübbe, C., Kroon, J.A.V.: The extended conformal Einstein field equations with matter: the Einstein–Maxwell field. J. Geom. Phys. 62(6), 1548–1570 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lübbe, C., Kroon, J.A.V.: A conformal approach for the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1–25 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lübbe, C., Kroon, J.A.V.: A stability result for purely radiative spacetimes. J. Hyperbolic Differ. Equ. 07(03), 545–579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mars, M., Torben Paetz, T., Senovilla, J.M.M., Simon, W.: Characterization of (asymptotically) Kerr–de Sitter-like spacetimes at null infinity. Class. Quantum Gravity 33(15), 155001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Martín-García, J.M.: xAct: efficient tensor computer algebra. http://www.xact.es

  36. Martín-García, J.M.: xPerm: fast index canonicalization for tensor computer algebra. Comput. Phys. Commun. 179, 597–603 (2008)

    Article  ADS  MATH  Google Scholar 

  37. Moncrief, V.: Spacetime symmetries and linearization stability of the Einstein equations. I. J. Math. Phys. 16(3), 493–497 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Paetz, T.T.: Killing initial data on spacelike conformal boundaries. J. Geom. Phys 106, 51–69 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10(2), 66–68 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  40. Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. A 284(1397), 159–203 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dr. Valiente Kroon for his assistance with the computations dealing with the initial value formulation of the vacuum conformal equations, for a careful reading of the manuscript and for many comments and suggestions that improved it. We thank the financial support from Grant 14-37086G and the consecutive Grant 19-01850S of the Czech Science Foundation. Partial support from the projects IT956-16 (“Eusko Jaurlaritza”, Spain), FIS2014-57956-P (“Ministerio de Economía y Competitividad”, Spain), PTDC/MAT-ANA /1275/2014 (“Fundação para a Ciência e a Tecnologia”, Portugal) and the Mobility Fund of the Charles University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso García-Parrado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Parrado, A. Type D conformal initial data. Gen Relativ Gravit 52, 39 (2020). https://doi.org/10.1007/s10714-020-02687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02687-x

Keywords

Navigation