Skip to main content
Log in

Strong gravitational lensing by regular electrically charged black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In nonlinear electrodynamics a photon does not follow null geodesics of background geometry, but moves along null geodesics of a corresponding effective geometry. Therefore, in the strong deflection limit, in order to study the gravitational lensing of the regular electrically charged black holes obtained by coupling general relativity to nonlinear electrodynamics, one should firstly obtain the corresponding effective geometry, which is a necessary and key step. I obtain the deflection angle of the photon in the strong deflection limit, and further calculate the angular position and magnification of relativistic images. It is found that, the electric charge has significant effect on the gravitational lensing of regular black holes. With the increase of the electric charge q, the angular position of the relativistic images \(\theta _{\infty }\) and the relative magnification \(\mathcal {R}_{m}\) as a function of q decrease, while the angular separation between the outermost relativistic image and the others \(\mathcal {S}\) as a function of q increases. I also discuss the measurement of observables for the black hole at the center of our Galaxy in the cases of regular electrically charged black hole effective metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There exists a general consensus that astrophysical black holes with large amounts of charge can not exist in nature since astrophysical black holes are always surrounded by some plasma which is a very good conductor, consequently the electric charge of them would be significantly reduced shortly by interaction with the surrounding plasma [43,44,45]. However, this point of view has been challenged. Some researchers found that the electrically charged black hole can be formed during electrically charged stellar collapse or accreting process of a neutral black hole [30, 44,45,46,47,48].

References

  1. Bardeen, J.: Presented at GR5, Tiflis, U.S.S.R., and Published in the Conference Proccedings in the U.S.S.R. (1968)

  2. Ayón-Beato, E., García, A.: Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ayón-Beato, E., García, A.: Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  4. Ayón-Beato, E., García, A.: Phys. Lett. B 464, 25 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ayón-Beato, E., García, A.: Gen. Relativ. Gravit. 31, 629 (1999)

    Article  ADS  Google Scholar 

  6. Bronnikov, K.A.: Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dymnikova, I.: Class. Quantum Grav. 21, 4417 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bronnikov, K.A., Fabris, J.C.: Phys. Rev. Lett. 96, 251101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bambi, C., Modesto, L.: Phys. Lett. B 721, 329 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Balart, L., Vagenas, E.C.: Phys. Lett. B 730, 14 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Balart, L., Vagenas, E.C.: Phys. Rev. D 90, 124045 (2014)

    Article  ADS  Google Scholar 

  12. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ansoldi, S., et al.: Phys. Lett. B 645, 261 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Nicolini, P.: Int. J. Mod. Phys. A 24, 1229 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ansoldi S.: arXiv:0802.0330

  16. Bozza, V.: Phys. Rev. D 66, 103001 (2002)

    Article  ADS  Google Scholar 

  17. Bozza, V., et al.: Gen. Relativ. Gravit. 33, 1535 (2001)

    Article  ADS  Google Scholar 

  18. Eiroa, E.F., Sendra, C.M.: Class. Quantum Grav. 28, 085008 (2011)

    Article  ADS  Google Scholar 

  19. Eiroa, E.F., Sendra, C.M.: Phys. Rev. D 86, 083009 (2012)

    Article  ADS  Google Scholar 

  20. Eiroa, E.F., Sendra, C.M.: Phys. Rev. D 88, 103007 (2013)

    Article  ADS  Google Scholar 

  21. Eiroa, E.F.: Eur. Phys. J. C 74, 3171 (2014)

    Article  ADS  Google Scholar 

  22. Whisker, R.: Phys. Rev. D 71, 064004 (2005)

    Article  ADS  Google Scholar 

  23. Majumdar, A.S., Mukherjee, N.: Int. J. Mod. Phys. D. 14, 1095 (2005)

    Article  ADS  Google Scholar 

  24. Eiroa, E.F., Sendra, C.M.: Phys. Rev. D 71, 083010 (2005)

    Article  ADS  Google Scholar 

  25. Eiroa, E.F.: Phys. Rev. D 73, 043002 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhao, S.-S., Xie, Y.: JCAP 07, 007 (2016)

    Article  ADS  Google Scholar 

  27. Chen, S., Jing, J.: Phys. Rev. D 80, 024036 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cheng, H., Man, J.: Class. Quantum Grav. 28, 015001 (2011)

    Article  ADS  Google Scholar 

  29. Ding, C., Kang, S., Chen, C.-Y.: Phys. Rev. D 83, 084005 (2011)

    Article  ADS  Google Scholar 

  30. Ding, C., Jing, J.: JHEP 10, 052 (2011)

    Article  ADS  Google Scholar 

  31. Ding, C., et al.: Phys. Rev. D 88, 104007 (2013)

    Article  ADS  Google Scholar 

  32. Tsukamoto, N., et al.: Phys. Rev. D 90, 064043 (2014)

    Article  ADS  Google Scholar 

  33. Wei, S.W., Yang, K., Liu, Y.-X.: Eur. Phys. J. C 75, 253 (2015)

    Article  ADS  Google Scholar 

  34. Sotani, H., Miyamoto, U.: Phys. Rev. D 92, 044052 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Wei, S.W., Liu, Y.X., Fu, C.E.: Adv. High Energy Phys. 2015, 454217 (2015)

    Google Scholar 

  36. Bhadra, A.: Phys. Rev. D 67, 103009 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sarkar, K., Bhadra, A.: Class. Quantum Grav. 23, 6101 (2006)

    Article  ADS  Google Scholar 

  38. Mukherjee, N., Majumdar, A.S.: Gen. Relativ. Gravit. 39, 583 (2007)

    Article  ADS  Google Scholar 

  39. Ghosh, T., SenGupta, S.: Phys. Rev. D 81, 044013 (2010)

    Article  ADS  Google Scholar 

  40. Gyulchev, G.N., Stefanov, IZh: Phys. Rev. D 87, 063005 (2013)

    Article  ADS  Google Scholar 

  41. Liang, J.: Chin. Phys. Lett. 34, 050401 (2017)

    Article  ADS  Google Scholar 

  42. Liang, J.: Commun. Theor. Phys. 67, 407 (2017)

    Article  ADS  Google Scholar 

  43. Narayan, R.: New J. Phys. 7, 199 (2005)

    Article  ADS  Google Scholar 

  44. Ghezzi, G.R.: Phys. Rev. D 72, 104017 (2005)

    Article  ADS  Google Scholar 

  45. Baushev, A.S., Chardonnet, P.: Int. J. Mod. Phys. D 18, 2035 (2000)

    Article  ADS  Google Scholar 

  46. Ghezzi, G.R., Letelier, P.S.: Phys. Rev. D 75, 024020 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ruffini, R., et al.: Astron. Astrophys. 350, 334 (1999)

    ADS  Google Scholar 

  48. Cuesta, H.J.M., Penna-Firme, A., Pérez-Lorenzana, A.: Phys. Rev. D 67, 087702 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  49. Gatiérrez, S.A., Dudley, A., Plebańsky, J.: J. Math. Phys. 22, 2835 (1981)

    Article  MathSciNet  Google Scholar 

  50. Novello, M., et al.: Phys. Rev. D 61, 045001 (2000)

    Article  ADS  Google Scholar 

  51. Novello, M., Perez Bergliaffa, S.E., Salim, J.M.: Class. Quantum Grav. 17, 3821 (2000)

    Article  ADS  Google Scholar 

  52. Mosquera Cuesta, H.J., de Freitas, Pacheo J.A., Salim, J.M.: Int. J. Mod. Phys. A 21, 43 (2006)

    Article  ADS  Google Scholar 

  53. Ghaffarnejad H., Mojahedi M.A., Niad H.: arXiv:1601.05749

  54. Salazar, I.H., Garcia, A., Plebańsky, J.: J. Math. Phys. 28, 2171 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  55. Carter, B.: Phys. Rev. 174, 1559 (1968)

    Article  ADS  Google Scholar 

  56. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  57. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  58. Virbhadra, K.S., Narasimha, D., Chitre, S.M.: Astron. Astrophys. 337, 1 (1998)

    ADS  Google Scholar 

  59. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 62, 084003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  60. Claudel, C.-M., Virbhadra, K.S., Ellis, G.F.R.: J. Math. Phys. 42, 818 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  61. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 65, 103004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  62. Gillessen, S., et al.: Astrophys. J. Lett. 707, L114 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No. 15JK1077 and by the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No. BJ12-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Appendix A: Calculation of the deflection angle in the SDL

Appendix A: Calculation of the deflection angle in the SDL

We define variable [16, 27]

$$\begin{aligned} z=1-\frac{x_{0}}{x}. \end{aligned}$$
(44)

The integral \(I(x_{0})\) becomes

$$\begin{aligned} I(x_{0})=\int _{0}^{1}R(z,x_{0})f(z,x_{0}), \end{aligned}$$
(45)

where

$$\begin{aligned} R(z,x_{0})= & {} \frac{2x^{2}\sqrt{A(x)B(x)C_{0}}}{x_{0}C(x)}, \end{aligned}$$
(46)
$$\begin{aligned} f(z,x_{0})= & {} \frac{1}{\sqrt{A_{0}-A(x)\frac{C_{0}}{C(x)}}}. \end{aligned}$$
(47)

Here, it should be stressed that the functions without the subscript 0, A(x), B(x) and C(x) are evaluated at \(x=\frac{x_{0}}{1-z}\). \(R(z,x_{0})\) is regular for all values of z and \(x_{0}\), while \(f(z,x_{0})\) is divergent for \(z\rightarrow 0\). In order to find the order of the divergence of (45), we expand the argument of the square root in \(f(z,x_{0})\) to the second order in z:

$$\begin{aligned} f(z,x_{0})\sim f(z,x_{0})=\frac{1}{\sqrt{\zeta z+\chi z^{2}}}, \end{aligned}$$
(48)

where

$$\begin{aligned} \zeta= & {} \frac{x_{0}}{C_{0}}(A_{0}C'_{0}-A'_{0}C_{0}), \end{aligned}$$
(49)
$$\begin{aligned} \chi= & {} \frac{x_{0}}{2C^{2}_{0}}\bigg [(2C_{0}C'_{0}+x_{0}C_{0}C''_{0}-2x_{0}C'^{2}_{0})A_{0}\nonumber \\&+\,(2x_{0}C'_{0}-2C_{0})C_{0}A'_{0}-x_{0}C^{2}_{0}A''_{0}\bigg ]. \end{aligned}$$
(50)

(49) clearly shows that \(\zeta \) vanishes at \(x_{0}=x_{m}\), so \(f(z,x_{0})\propto \frac{1}{z}\) and \(I(x_{0})\) (and consequently the deflection angle \(\alpha (x_{0})\)) diverges logarithmically. Then, following Ref. [16], we split (45) into two pieces

$$\begin{aligned} I(x_{0})=I_{D}(x_{0})+I_{R}(x_{0}), \end{aligned}$$
(51)

where \(I_{D}(x_{0})\) is divergent, while \(I_{R}(x_{0})\) is regular. They are

$$\begin{aligned} I_{D}(x_{0})= & {} \int _{0}^{1}R(0,x_{m})f_{0}(z,x_{0})dz , \end{aligned}$$
(52)
$$\begin{aligned} I_{R}(x_{0})= & {} \int _{0}^{1}g(z,x_{0})dz, \end{aligned}$$
(53)

where

$$\begin{aligned} g(z,x_{0})=R(z,x_{0})f(z,x_{0})-R(0,x_{m})f_{0}(z,x_{0}). \end{aligned}$$
(54)

\(I_{D}(x_{0})\) can be evaluated exactly as

$$\begin{aligned} I_{D}(x_{0})=R(0,x_{m})\frac{2}{\sqrt{\chi }}\log \frac{\sqrt{\chi }+\sqrt{\zeta +\chi }}{\sqrt{\zeta }}. \end{aligned}$$
(55)

We further expand \(\zeta \) in powers of \((x_{0}-x_{m})\), getting

$$\begin{aligned} \zeta =\frac{2\chi _{m}}{x_{m}}(x_{0}-x_{m})+\mathcal {O}(x_{0}-x_{m})^{2}, \end{aligned}$$
(56)

where

$$\begin{aligned} \chi _{m}=\frac{x^{2}_{m}}{2C_{m}}(A_{m}C''_{m}-A''_{m}C_{m}). \end{aligned}$$
(57)

Substituting (56) and (57) into (55), we get

$$\begin{aligned} I_{D}(x_{0})=-a\log \bigg (\frac{x_{0}}{x_{m}}-1\bigg )+b_{D}+\mathcal {O}(x_{0}-x_{m}), \end{aligned}$$
(58)

where

$$\begin{aligned} a= & {} \frac{R(0,x_{m})}{\sqrt{\chi _{m}}}, \end{aligned}$$
(59)
$$\begin{aligned} b_{D}= & {} \frac{R(0,x_{m})}{\sqrt{\chi _{m}}}\log 2. \end{aligned}$$
(60)

We can also expand \(g(z,x_{0})\) in powers of \((x_{0}-x_{m})\) to get

$$\begin{aligned} g(z,x_{0})=\sum _{n=0}^{\infty }\frac{1}{n!}(x_{0}-x_{m})^{n}\frac{\partial ^{n}g}{\partial x^{n}_{0}}\bigg |_{x_{0}=x_{m}}. \end{aligned}$$
(61)

Substituting (61) into (53), and just retaining the \(n=0\) term, leads to

$$\begin{aligned} I_{R}(x_{0})=\int _{0}^{1}g(z,x_{m})dz+\mathcal {O}(x_{0}-x_{m}). \end{aligned}$$
(62)

Expanding (20), we get

$$\begin{aligned} u-u_{m}=c_{2}(x-x_{0})^{2}, \end{aligned}$$
(63)

where the coefficient \(c_{2}\) is

$$\begin{aligned} c_{2}=\frac{C''_{m}A_{m}-C_{m}A''_{m}}{4\sqrt{A^{3}_{m}C_{m}}}=\frac{\chi _{m}}{2x^{2}_{m}}\sqrt{\frac{C_{m}}{A^{3}_{m}}}. \end{aligned}$$
(64)

Using (63), (64) and \(\theta \approx \frac{u}{D_{OL}}\), we can finally express the deflection angle as a function of \(\theta \) as

$$\begin{aligned} \alpha (\theta )=-\bar{a}\log \bigg (\frac{\theta D_{OL}}{u_{m}}-1\bigg )+\bar{b}+\mathcal {O}(u-u_{m}), \end{aligned}$$
(65)

where

$$\begin{aligned} \bar{a}= & {} \frac{R(0,x_{m})}{2\sqrt{\chi _{m}}} , \end{aligned}$$
(66)
$$\begin{aligned} \bar{b}= & {} -\pi +b_{R}+\bar{a}\log \frac{2\chi _{m}}{A_{m}}, \end{aligned}$$
(67)

where \(b_{R}\) is defined as

$$\begin{aligned} b_{R}=I_{R}(x_{m})=\int _{0}^{1}g(z,x_{m})dz. \end{aligned}$$
(68)

[See (62)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J. Strong gravitational lensing by regular electrically charged black holes. Gen Relativ Gravit 49, 137 (2017). https://doi.org/10.1007/s10714-017-2307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2307-7

Keywords

Navigation