Skip to main content
Log in

Quasinormal modes of non-Abelian hyperscaling violating Lifshitz black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the quasinormal modes of scalar field perturbations in the background of non-Abelian hyperscaling violating Lifshitz black holes. We find that the quasinormal frequencies have no real part so there is no oscillatory behavior in the perturbations, only exponential decay, that is, the system is always overdamped, which guarantees the mode stability of non-Abelian hyperscaling violating Lifshitz black holes. We determine analytically the quasinormal modes for massless scalar fields for a dynamical exponent \(z=2\) and hyperscaling violating exponent \(\tilde{\theta }>-2\). Also, we obtain numerically the quasinormal frequencies for different values of the dynamical exponent and the hyperscaling violating exponent by using the improved asymptotic iteration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kachru, S., Liu, X., Mulligan, M.: Phys. Rev. D 78, 106005 (2008). [arXiv:0808.1725 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  2. Dong, X., Harrison, S., Kachru, S., Torroba, G., Wang, H.: JHEP 1206, 041 (2012). [arXiv:1201.1905 [hep-th]]

    Article  ADS  Google Scholar 

  3. Narayan, K.: Phys. Rev. D 85, 106006 (2012). [arXiv:1202.5935 [hep-th]]

    Article  ADS  Google Scholar 

  4. Perlmutter, E.: JHEP 1206, 165 (2012). [arXiv:1205.0242 [hep-th]]

    Article  ADS  Google Scholar 

  5. Ammon, M., Kaminski, M., Karch, A.: JHEP 1211, 028 (2012). [arXiv:1207.1726 [hep-th]]

    Article  ADS  Google Scholar 

  6. Bhattacharya, J., Cremonini, S., Sinkovics, A.: JHEP 1302, 147 (2013). [arXiv:1208.1752 [hep-th]]

    Article  ADS  Google Scholar 

  7. Dey, P., Roy, S.: Phys. Lett. B 720, 419 (2013). [arXiv:1209.1049 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  8. Alishahiha, M., Colgain, E.O., Yavartanoo, H.: JHEP 1211, 137 (2012). [arXiv:1209.3946 [hep-th]]

    Article  ADS  Google Scholar 

  9. Gath, J., Hartong, J., Monteiro, R., Obers, N.A.: JHEP 1304, 159 (2013). [arXiv:1212.3263 [hep-th]]

    Article  ADS  Google Scholar 

  10. Bueno, P., Chemissany, W., Shahbazi, C.S.: Eur. Phys. J. C 74(1), 2684 (2014). [arXiv:1212.4826 [hep-th]]

    Article  ADS  Google Scholar 

  11. Iizuka, N., Kachru, S., Kundu, N., Narayan, P., Sircar, N., Trivedi, S.P., Wang, H.: JHEP 1303, 126 (2013). [arXiv:1212.1948 [hep-th]]

    Article  ADS  Google Scholar 

  12. Fan, Z.: Phys. Rev. D 88(2), 026018 (2013). [arXiv:1303.6053 [hep-th]]

    Article  ADS  Google Scholar 

  13. Fan, Z.: JHEP 1308, 119 (2013). [arXiv:1305.1151 [hep-th]]

    Article  ADS  Google Scholar 

  14. Fan, Z.: JHEP 1309, 048 (2013). [arXiv:1305.2000 [hep-th]]

    Article  ADS  Google Scholar 

  15. Bhattacharya, J., Cremonini, S., Gouteraux, B.: JHEP 1502, 035 (2015). [arXiv:1409.4797 [hep-th]]

    Article  ADS  Google Scholar 

  16. Ogawa, N., Takayanagi, T., Ugajin, T.: JHEP 1201, 125 (2012). [arXiv:1111.1023 [hep-th]]

    Article  ADS  Google Scholar 

  17. Huijse, L., Sachdev, S., Swingle, B.: PhysRevB.85.035121. arXiv:1112.0573 [cond-mat.str-el]

  18. Dehghani, M.H., Sheykhi, A., Sadati, S.E.: Phys. Rev. D 91(12), 124073 (2015). [arXiv:1505.01134 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  19. Ganjali, M.A.: arXiv:1508.05614 [hep-th]

  20. Feng, X.H., Geng, W.J.: Phys. Lett. B 747, 395 (2015). [arXiv:1502.00863 [hep-th]]

    Article  ADS  Google Scholar 

  21. Regge, T., Wheeler, J.A.: Phys. Rev. 108, 1063 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zerilli, F.J.: Phys. Rev. D 2, 2141 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zerilli, F.J.: Phys. Rev. Lett. 24, 737 (1970)

    Article  ADS  Google Scholar 

  24. Kokkotas, K.D., Schmidt, B.G.: Living Rev. Rel. 2, 2 (1999). [arXiv:gr-qc/9909058]

    Article  Google Scholar 

  25. Nollert, H.-P.: Class. Quant. Grav. 16, R159 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  26. Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011). [arXiv:1102.4014 [gr-qc]]

    Article  ADS  Google Scholar 

  27. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998). [arXiv:hep-th/9711200]

    Article  ADS  MathSciNet  Google Scholar 

  28. Birmingham, D., Sachs, I., Solodukhin, S.N.: Phys. Rev. Lett. 88, 151301 (2002). [arXiv:hep-th/0112055]

    Article  ADS  MathSciNet  Google Scholar 

  29. Cho, H.T., Cornell, A.S., Doukas, J., Naylor, W.: Class. Quant. Grav. 27, 155004 (2010). [arXiv:0912.2740 [gr-qc]]

    Article  ADS  Google Scholar 

  30. Ciftci, H., Hall, R.L., Saad, N.: J. Phys. A 36(47), 11807–11816 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ciftci, H., Hall, R.L., Saad, N.: Phys. Lett. A 340, 388 (2005)

    Article  ADS  Google Scholar 

  32. Gonzlez, P.A., Vsquez, Y.: Astrophys. Space Sci. 361(7), 224 (2016). [arXiv:1509.00802 [hep-th]]

    Article  ADS  Google Scholar 

  33. Cho, H.T., Cornell, A.S., Doukas, J., Huang, T.R., Naylor, W.: Adv. Math. Phys. 2012, 281705 (2012). [arXiv:1111.5024 [gr-qc]]

    Article  Google Scholar 

  34. Sybesma, W., Vandoren, S.: JHEP 1505, 021 (2015). [arXiv:1503.07457 [hep-th]]

    Article  ADS  Google Scholar 

  35. Zhang, C.Y., Zhang, S.J., Wang, B.: Nucl. Phys. B 899, 37 (2015). [arXiv:1501.03260 [hep-th]]

    Article  ADS  Google Scholar 

  36. Barakat, T.: Int. J. Mod. Phys. A 21, 4127 (2006)

    Article  ADS  Google Scholar 

  37. Catalan, M., Cisternas, E., Gonzalez, P.A., Vasquez, Y.: Eur. Phys. J. C 74(3), 2813 (2014). [arXiv:1312.6451 [gr-qc]]

    Article  ADS  Google Scholar 

  38. Cataln, M., Cisternas, E., Gonzlez, P.A., Vsquez, Y.: Astrophys. Space Sci. 361(6), 189 (2016). [arXiv:1404.3172 [gr-qc]]

    Article  ADS  Google Scholar 

  39. Cuadros-Melgar, B., de Oliveira, J., Pellicer, C.E.: Phys. Rev. D 85, 024014 (2012). [arXiv:1110.4856 [hep-th]]

    Article  ADS  Google Scholar 

  40. Gonzalez, P.A., Saavedra, J., Vasquez, Y.: Int. J. Mod. Phys. D 21, 1250054 (2012). [arXiv:1201.4521 [gr-qc]]

    Article  ADS  Google Scholar 

  41. Gonzalez, P.A., Moncada, F., Vasquez, Y.: Eur. Phys. J. C 72, 2255 (2012). [arXiv:1205.0582 [gr-qc]]

    Article  ADS  Google Scholar 

  42. Myung, Y.S., Moon, T.: Phys. Rev. D 86, 024006 (2012). [arXiv:1204.2116 [hep-th]]

    Article  ADS  Google Scholar 

  43. Becar, R., Gonzalez, P.A., Vasquez, Y.: Int. J. Mod. Phys. D 22, 1350007 (2013). [arXiv:1210.7561 [gr-qc]]

    Article  ADS  Google Scholar 

  44. Giacomini, A., Giribet, G., Leston, M., Oliva, J., Ray, S.: Phys. Rev. D 85, 124001 (2012). [arXiv:1203.0582 [hep-th]]

    Article  ADS  Google Scholar 

  45. Lepe, S., Lorca, J., Pena, F., Vasquez, Y.: Phys. Rev. D 86, 066008 (2012). [arXiv:1205.4460 [hep-th]]

    Article  ADS  Google Scholar 

  46. Catalan, M., Vasquez, Y.: Phys. Rev. D 90(10), 104002 (2014). [arXiv:1407.6394 [gr-qc]]

    Article  ADS  Google Scholar 

  47. Taylor, M.: arXiv:0812.0530 [hep-th]

  48. Tarrio, J., Vandoren, S.: JHEP 1109, 017 (2011). [arXiv:1105.6335 [hep-th]]

    Article  ADS  Google Scholar 

  49. Becar, R., Gonzalez, P.A., Vasquez, Y.: Eur. Phys. J. C 76(2), 78 (2016). [arXiv:1510.06012 [gr-qc]]

    Article  ADS  Google Scholar 

  50. Bai, N., Gao, Y.H., Qi, B.G., Xu, X.B.: Mod. Phys. Lett. A 28, 1350145 (2013)

    Article  ADS  Google Scholar 

  51. Alishahiha, M., Mohammadi Mozaffar, M.R., Mollabashi, A.: Phys. Rev. D 86, 026002 (2012). [arXiv:1201.1764 [hep-th]]

    Article  ADS  Google Scholar 

  52. Lopez-Ortega, A.: Gen. Relativ. Gravit. 46, 1756 (2014). [arXiv:1406.0126 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  53. Olivares, M., Vsquez, Y., Villanueva, J.R., Moncada, F.: Celest. Mech. Dyn. Astron. 119, 207 (2014). [arXiv:1306.5285 [gr-qc]]

    Article  ADS  Google Scholar 

  54. Olivares, M., Rojas, German, Vasquez, Y., Villanueva, J.R.: Astrophys. Space Sci. 347, 83 (2013). [arXiv:1304.4297 [gr-qc]]

    Article  ADS  Google Scholar 

  55. Villanueva, J.R., Vasquez, Y.: Eur. Phys. J. C 73, 2587 (2013). [arXiv:1309.4417 [gr-qc]]

    Article  ADS  Google Scholar 

  56. Fan, Z.Y., Lu, H.: JHEP 1504, 139 (2015). [arXiv:1501.05318 [hep-th]]

    Article  ADS  Google Scholar 

  57. Abramowitz, M., Stegun, A.: Handbook of Mathematical Functions. Dover Publications, New York (1970)

    MATH  Google Scholar 

  58. Horowitz, G.T., Hubeny, V.E.: Phys. Rev. D 62, 024027 (2000). [arXiv:hep-th/9909056]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for the very useful comments which help us improve the quality of our paper. This work was partially funded by the Comisión Nacional de Ciencias y Tecnología through FONDECYT Grant 11140674 (PAG) and by the Dirección de Investigación y Desarrollo de la Universidad de La Serena (Y.V.). P.A.G. acknowledges the hospitality of the Universidad de La Serena where part of this work was undertaken. R.B. acknowledges the hospitality of the Universidad Diego Portales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Bécar.

Appendix 1: Improved AIM

Appendix 1: Improved AIM

In this appendix we give a brief review of the improved AIM, which is used to solve homogeneous linear second-order differential equations subject to boundary conditions. First, it is necessary to implement the boundary conditions. For this purpose the dependent variable must be redefined in terms of a new function, say \(\chi \), that satisfies the boundary conditions appropriate to the eigenvalue problem under consideration. In the study of quasinormal modes of the black holes, one solves the radial equation on the horizon and at spatial infinity, and imposes the boundary condition that on the horizon only ingoing waves exist there and at spatial infinity the appropriate boundary condition depends on the asymptotic behavior of the spacetime [in our case we imposed the scalar field to be null at spatial infinity due to the effective potential diverges there; therefore, the new radial function was defined in Eq. (48)]. Thus, in order to implement the improved AIM the differential equation must be written in the form

$$\begin{aligned} \chi ^{\prime \prime }=\lambda _{0}(y)\chi ^{\prime }+s_{0}(y)\chi . \end{aligned}$$
(52)

Then, one must differentiate Eq. (52) n times with respect to y, which yields the following equation:

$$\begin{aligned} \chi ^{n+2}=\lambda _{n}(y)\chi ^{\prime }+s_{n}(y)\chi , \end{aligned}$$
(53)

where

$$\begin{aligned} \lambda _{n}(y)= & {} \lambda _{n-1}^{\prime }(y)+s_{n-1}(y)+\lambda _{0}(y)\lambda _{n-1}(y), \end{aligned}$$
(54)
$$\begin{aligned} s_{n}(y)= & {} s_{n-1}^{\prime }(y)+s_{0}(y)\lambda _{n-1}(y). \end{aligned}$$
(55)

Then, expanding the \(\lambda _{n}\) and \(s_{n}\) in a Taylor series around some point \(\eta \), at which the improved AIM is performed, yields

$$\begin{aligned} \lambda _{n}(\eta )= & {} \sum _{i=0}^{\infty }c_{n}^{i}(y-\eta )^{i}, \end{aligned}$$
(56)
$$\begin{aligned} s_{n}(\eta )= & {} \sum _{i=0}^{\infty }d_{n}^{i}(y-\eta )^{i}, \end{aligned}$$
(57)

where the \(c_{n}^{i}\) and \(d_{n}^{i}\) are the \(i^{th}\) Taylor coefficients of \(\lambda _{n}(\eta )\) and \(s_{n}(\eta )\), respectively, and by substituting the above expansions in Eqs. (54) and (55) the following set of recursion relations for the coefficients is obtained:

$$\begin{aligned} c_{n}^{i}= & {} (i+1)c_{n-1}^{i+1}+d_{n-1}^{i}+ \sum _{k=0}^{i}c_{0}^{k}c_{n-1}^{i-k}, \end{aligned}$$
(58)
$$\begin{aligned} d_{n}^{i}= & {} (i+1)d_{n-1}^{i+1}+\sum _{k=0}^{i}d_{0}^{k}c_{n-1}^{i-k}. \end{aligned}$$
(59)

Thus, the authors of the improved AIM have avoided the derivatives that contain the AIM in [29, 33], and the quantization condition, which is equivalent to imposing a termination on the number of iterations, is given by

$$\begin{aligned} d_{n}^{0}c_{n-1}^{0}-d_{n-1}^{0}c_{n}^{0}=0. \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bécar, R., González, P.A. & Vásquez, Y. Quasinormal modes of non-Abelian hyperscaling violating Lifshitz black holes. Gen Relativ Gravit 49, 26 (2017). https://doi.org/10.1007/s10714-016-2168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2168-5

Keywords

Navigation