Skip to main content

Advertisement

Log in

Primordial magnetic field generated in natural inflation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the simple gauge invariant model \({f^2}FF\) as a way to generate primordial magnetic fields (PMF) in natural inflation (NI). We compute both magnetic and electric spectra generated by the \({f^2}FF\) model in NI for different values of model parameters and find that both de Sitter and power law expansion lead to the same results at sufficiently large number of e-foldings. We also find that the necessary scale invariance property of the PMF cannot be obtained in NI in first order of slow roll limits under the constraint of inflationary potential, \(V\left( 0 \right) \simeq 0\). Furthermore, if this constraint is relaxed to achieve scale invariance, then the model suffers from the backreaction problem for the co-moving wave number, \(k \lesssim 8.0\times 10^{-7} \mathrm {Mpc^{-1}}\) and Hubble parameter, \(H_i \gtrsim 1.25\times 10^{-3} \mathrm {M_\mathrm{{Pl}}}\). The former can be considered as a lower bound of k and the later as an upper bound of \(H_i\) for a model which is free from the backreaction problem. Further, we show that there is a narrow range of the height of the potential \(\Lambda \) around \({\Lambda _{\min }} \approx 0.00874{M_{\mathrm{{Pl}}}}\) and of k around \({k_{\min }} \sim 0.0173\mathrm{{Mp}}{\mathrm{{c}}^{ - 1}}\), at which the energy of the electric field can fall below the energy of the magnetic field. The range of k lies within some observable scales. However, the relatively short range of k presents a challenge to the viability of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  2. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  3. Sato, K.: MNRAS 195, 467 (1981)

    Article  ADS  Google Scholar 

  4. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  5. Neronov, A., Vovk, I.: Science 328, 73–75 (2010)

    Article  ADS  Google Scholar 

  6. Fujita, T., Mukohyama, S.: arXiv:1205.5031v3 [astro-ph.CO]

  7. Tavecchio, F., et al.: arXiv:1004.1329v2 [astro-ph.CO]

  8. Ichiki, K., Takahashi, K., Sugiyama, N.: arXiv:1112.4705v1 [astro-ph.CO]

  9. Ade, P.A.R., et al.: (Planck intermediate results. XXXIII), arXiv:1411.2271v1 [astro-ph.GA]

  10. Esseya, W., Andob, S., Kusenko, A.: Astropart. Phys. 35, 135 (2011).arXiv:1012.5313

    Article  ADS  Google Scholar 

  11. Kahniashvili, T.: Phys. Rev. D 82, 083005 (2010)

    Article  ADS  Google Scholar 

  12. Ade, P.A.R., et al.: Planck 2015 Results. XIX. Constraints on Primordial Magnetic Fields. arXiv:1502.01594v1 [astro-ph.CO]

  13. Subramanian, K., Barrow, J.: Phys. Rev. D 58, 083502 (1998). arXiv:astro-ph/9712083v1

    Article  ADS  Google Scholar 

  14. Jedamzik, K., Katalinić, V., Olinto, A.: Phys. Rev. D 57, 3264 (1998). arXiv:astro-ph/9606080v2

    Article  ADS  Google Scholar 

  15. Moss, D., Sokoloff, D.: arXiv:1307.0142v1 [astro-ph.CO]

  16. Grasso, D., Rubinstein, H.: Phys. Rep. 348, 163 (2001). arXiv:astro-ph/0009061v2

    Article  ADS  Google Scholar 

  17. Widrow, L.: Rev. Mod. Phys. 74, 775 (2002). arXiv:astro-ph/0207240v1

    Article  ADS  Google Scholar 

  18. Barrow, J., Maartens, R., Tsagas, C.: Phys. Rep. 449, 131 (2007). arXiv:astro-ph/0611537v4

    Article  MathSciNet  ADS  Google Scholar 

  19. Kandus, A., Kunze, K., Tsagas, C.: arXiv:1007.3891v2 [astro-ph.CO]

  20. Ryu, D., et al.: Space Sci. 166, 1 (2012)

    Article  ADS  Google Scholar 

  21. Widrow, L., et al.: Space. Sci. Rev. 166, 37 (2012)

    Article  ADS  Google Scholar 

  22. Yamazaki, D., et al.: Phys. Rep. 517, 141 (2012)

    Article  ADS  Google Scholar 

  23. Durrer, R., Neronov, A.: arXiv:1303.7121v2 [astro-ph.CO]

  24. Turner, M.S., Widrow, L.M.: Phys. Rev. D 37, 2743 (1988); [SPIRES]

  25. Bamba, K., Yokoyama, J.: Phys. Rev. D 69, 043507 (2004)

    Article  ADS  Google Scholar 

  26. Bamba, K., Yokoyama, J.: Phys. Rev. D 70, 083508 (2004)

    Article  ADS  Google Scholar 

  27. Ratra, B.: GRP-287/CALT-68-1751 (1991)

  28. Ratra, B.: Astrophys. J. 391, L1 (1992)

    Article  ADS  Google Scholar 

  29. Martin, J., Yokoyama, J.: JCAP 0801, 025 (2008).arXiv:0711.4307v1 [astro-ph].CO

    Article  ADS  Google Scholar 

  30. Subramanian, K.: Astron. Nachr. 331, 110 (2010).arXiv:0911.4771v2 [astro-ph.CO]

    Article  ADS  MATH  Google Scholar 

  31. Himmetoglu, B.: Vector Fields During Cosmic Inflation: Stability Analysis and Phenomenological Signatures. PhD Thesis (2010)

  32. Kanno, S., Soda, J., Watanabe, M.A.: JCAP 0912, 009 (2009). arXiv:0908.3509 [astro-ph.CO]

  33. Demozzi, V., Mukhanov, V., Rubinstein, H.: JCAP 0908, 025 (2009).arXiv:0907.1030v1 [astro-ph.CO]

    Article  ADS  Google Scholar 

  34. Ferreira, R.J.Z., Jain, R.K., Sloth, M.S.: JCAP 10, 004 (2013).arXiv:1305.7151v3 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. Linde, A.: Phys. Lett. B129, 177 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  36. Vilenkin, A.: arXiv:gr-qc/0409055v1

  37. Martin, J., Ringeval, C., Vennin, V.: arXiv:1303.3787v3 [astro-ph.CO]

  38. Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985)

    Article  ADS  Google Scholar 

  39. Komatsu, E., et al.: (WMAP7) Astrophys. J. Suppl. 192, 18,(2011). arXiv:1001.4538v3 [astro-ph.CO]

  40. Hinshaw, G., et al.: Astrophys. J. Suppl. 208, 19 (2013); (WMAP9). arXiv:1212.5226 [astro-ph.CO]

  41. Ade, P.A.R., et al.: Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 571, A22 (2014). arXiv:1303.5082v2 [astro-ph.CO]

  42. Linde, A.: arXiv:1402.0526v2 [hep-th]

  43. Ade, P.A.R., et al. BICEP2 collaboration. Phys. Rev. Lett. 112, 241101 (2014). arXiv:1403.3985

  44. Martin, J., Trotta, C.R.R., Vennin, V.: JCAP 03, 039 (2014)

    MathSciNet  ADS  Google Scholar 

  45. Martin, J., et al.: Phys. Rev. D 90, 063501 (2014).arXiv:1405.7272v2 [astro-ph.CO]

    Article  ADS  Google Scholar 

  46. Kallosh, R., Linde, A., Westphal, A.: Phys. Rev. D 90, 023534 (2014).arXiv:1405.0270v1 [hep-th]

    Article  ADS  Google Scholar 

  47. Kallosh, R., Linde, A., Roest, D.: arXiv:1405.3646v1 [hep-th]

  48. Kobayashi, T., Seto, O.: Phys. Rev. D 89, 103524 (2014).arXiv:1403.5055v2 [astro-ph.CO]

    Article  ADS  Google Scholar 

  49. Chiba, T., Kohri, K.: arXiv:1406.6117v1 [astro-ph.CO]

  50. Freese, K., Frieman, J.A., Olinto, A.V.: Phys. Rev. Lett. 65, 3233 (1990)

    Article  ADS  Google Scholar 

  51. Freese, K., Kinney, W.H.: arXiv:1403.5277v3 [astro-ph.CO]

  52. Ade, P.A.R., et al.: Planck Intermediate Results. XXX. The Angular Power Spectrum of Polarized Dust. arXiv:1409.5738v1 [astro-ph.CO]

  53. Ade, P.A.R., et al.: A Joint Analysis of BICEP2/Keck Array and Planck Data 2015. arXiv:1502.00612v1 [astro-ph.CO]

  54. Ade, P.A.R., et al.: Planck 2015 Results. XX. Constraints on Inflation. arXiv:1502.02114v1 [astro-ph.CO]

  55. AlMuhammad, A., Lopez-Mobilia, R.: The Early Universe \({f^2}FF\) Model of Primordial Magnetic Field at Large Field Inflation (submitted to publication)

  56. AlMuhammad, A.: Inflationary Magnetogenesis in R2-Inflation After Planck (2015) (submitted to publication)

  57. Liddle, A.R. Lyth. D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press (2000)

  58. Liddle, A.R., Parsons, P., Barrow, J.D.: Phys. Rev. D 50, 7222 (1994). arXiv:astro-ph/9408015v1

    Article  ADS  Google Scholar 

  59. Martin, J., Schwarz, D.: Phys. Rev. D 62, 103520 (2000). arXiv:astro-ph/9911225v2

    Article  ADS  Google Scholar 

  60. Mukhanov, V.: Physical Foundation of Cosmology. Cambridge University Press (2005)

  61. Martin, J., Ringeval, C.: Phys. Rev. D 82, 023511 (2010).arXiv:1004.5525v2 [astro-ph.CO]

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Bharat Ratra for useful comments. This work is supported in part by the Department of Physics and Astronomy in The University of Texas at San Antonio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar S. AlMuhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMuhammad, A.S., Lopez-Mobilia, R. Primordial magnetic field generated in natural inflation. Gen Relativ Gravit 47, 134 (2015). https://doi.org/10.1007/s10714-015-1978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1978-1

Keywords

Navigation