Skip to main content
Log in

The \({\varvec{SL}}(2,\mathbb {R})\) totally constrained model: three quantization approaches

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We provide a detailed comparison of the different approaches available for the quantization of a totally constrained system with a constraint algebra generating the non-compact \(SL(2,\mathbb {R})\) group. In particular, we consider three schemes: the Refined Algebraic Quantization, the Master Constraint Programme and the Uniform Discretizations approach. For the latter, we provide a quantum description where we identify semiclassical sectors of the kinematical Hilbert space. We study the quantum dynamics of the system in order to show that it is compatible with the classical continuum evolution. Among these quantization approaches, the Uniform Discretizations provides the simpler description in agreement with the classical theory of this particular model, and it is expected to give new insights about the quantum dynamics of more realistic totally constrained models such as canonical general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For convenience, we have selected a Master Constraint with a factor two with respect to the one adopted in Ref. [22].

  2. This reflection operator plays a similar role than the one of the observables \( |\mathrm{sgn}(\hat{Q}_3)|p_1(\hat{Q}_i)|\mathrm{sgn}(\hat{Q}_3)|\) and \( |\mathrm{sgn}(\hat{P}_3)|p_2(\hat{P}_i)|\mathrm{sgn}(\hat{P}_3)|\) that break the superselection sectors within the Master Constraint [22].

References

  1. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

  2. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  5. Ashtekar, A.: Lectures on Non-perturbative Canonical Gravity. World Scientific, New Jersey (1991)

    Book  MATH  Google Scholar 

  6. Ashtekar, A., Tate, R.S.: An algebraic extension of Dirac quantization: examples. J. Math. Phys. 35, 6434 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Mena Marugán, G.A.: Involutions on the algebra of physical observables from reality conditions. J. Math. Phys 37, 196 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J., Thiemann, T.: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Giulini, D., Marolf, D.: On the generality of refined algebraic quantization. Class. Quantum Gravity 16, 2479 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Giulini, D., Marolf, D.: A uniqueness theorem for constraint quantization. Class. Quantum Gravity 16, 2489 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Marolf, D.: Quantum observables and recollapsing dynamics. Class. Quantum Gravity 12, 1199 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Marolf, D.: Observables and a Hilbert space for Bianchi IX. Class. Quantum Gravity 12, 1441 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Marolf, D.: Almost ideal clocks in quantum cosmology: a brief derivation of time. Class. Quantum Gravity 12, 2469 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Rendall, A.D.: Unique determination of an inner product by adjointness relations in the algebra of quantum observables. Class. Quantum Gravity 10, 2261 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Rendall, A.D.: Adjointness relations as a criterion for choosing an inner product. Lect. Not. Phys. 434, 319 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Thiemann, T.: The Phoenix Project: master constraint programme for loop quantum gravity. Class. Quantum Gravity 23, 2211 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Thiemann, T.: Quantum spin dynamics: VIII. The master constraint. Class. Quantum Gravity 23, 2249 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems. Class. Quantum Gravity 23, 1067 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: I. General framework. Class. Quantum Gravity 23, 1025 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: IV. Free field theories. Class. Quantum Gravity 23, 1121 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: V. Interacting field theories. Class. Quantum Gravity 23, 1143 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: III. \(SL(2,\mathbb{R})\) models. Class. Quantum Gravity 23, 1089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Campiglia, M., Di Bartolo, C., Gambini, R., Pullin, J.: Uniform discretizations: a new approach for the quantization of totally constrained systems. Phys. Rev. D 74, 124012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. Campiglia, M., Di Bartolo, C., Gambini, R., Pullin, J.: Uniform discretizations: a quantization procedure for totally constrained systems including gravity. J. Phys. Conf. Ser. 67, 012020 (2007)

    Article  Google Scholar 

  25. Gambini, R., Pullin, J.: Canonical quantization of general relativity in discrete space–times. Phys. Rev. Lett. 90, 021301 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Di Bartolo, C., Gambini, R., Pullin, J.: Canonical quantization of constrained theories on discrete spacetime lattices. Class. Quantum Gravity 19, 5275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gambini, R., Pullin, J.: Classical and quantum general relativity: a new paradigm. Gen. Relativ. Gravit. 37, 1689 (2005) [Int. J. Mod. Phys. D 14, 2355 (2005)]

  28. Montesinos, M., Rovelli, C., Thiemann, T.: \(SL(2,\mathbb{R})\) model with two Hamiltonian constraints. Phys. Rev. D 60, 044009 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gambini, R., Porto, R.A.: Relational time in generally covariant quantum systems: four models. Phys. Rev. D 63, 105014 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. Trunk, M.: An \(SL(2,\mathbb{R})\) model of constrained systems: algebraic constrained quantization. University of Freiburg THEP 99/3. Preprint. hep-th/9907056 (1999)

  31. Louko, J., Rovelli, C.: Refined algebraic quantization in the oscillator representation of \(SL(2,\mathbb{R})\). J. Math. Phys. 41, 132 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Louko, J., Molgado, A.: Group averaging in the (p, q) oscillator representation of \(SL(2,\mathbb{R})\). J. Math. Phys. 45, 1919 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Abramowitz, M., Stegun, I.A.: Hypergeometric functions. In: Abramowitz, M., Stegun, I.A. (eds) Handbook of Mathematical Functions. NBS Applied Mathematics Series, chap. 15, vol. LV, 9th edn. U.S. GPO, Washington DC (1970)

  34. Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42, 8 (1990)

    Article  Google Scholar 

  35. Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 2 (1991)

    Article  MathSciNet  Google Scholar 

  36. Gambini, R., Porto, R., Pullin, J.: A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence. New J. Phys. 6, 45 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by PEDECIBA (Uruguay) and the Spanish MEC Project FIS2011-30145-C03-02. The authors acknowledge to G. A. Mena Marugán for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Olmedo.

Appendices

Appendix 1: Physical states: normalizable solutions

In this appendix, we will describe the spectral resolution of \(\hat{H}\) adopting the treatment of Ref. [22]. Essentially, one starts with a representation of the positive and negative discrete series of \(sl(2,\mathbb {R})\). Each representation is associated with the corresponding Hilbert spaces of holomorphic and anti-holomorphic functions on the open unit disc in \(\mathbb {C}\), respectively, endowed with the scalar product, in both cases,

$$\begin{aligned} \langle f,h\rangle _l =\frac{l-1}{\pi }\int \limits _{D} f(z) \overline{h(z)} (1-|z|^2)^{l-2} dx\,dy \end{aligned}$$
(91)

where \(D\) is the unit disc and \(dx dy\) is the Lebesgue measure on \(\mathbb {C}\). If \(l=1\) one simply considers the limit \(l\rightarrow 1\) in the previous expression.

For the positive series, an orthonormal basis is given by

$$\begin{aligned} f^{l}_n:=\Big [\mu _{l}(n)\Big ]^{-\frac{1}{2}}z^{n}\quad (n \in \mathbb {N})\quad { \mathrm {with}}\quad \mu _{l}(n)=\frac{\varGamma (n+1)\varGamma (l)}{\varGamma (l+n)} , \end{aligned}$$
(92)

while for the negative series, the corresponding basis is given by the complex conjugated of \(f^{l}_n\). There exists also a unitary map between the polarized basis \(\{|k_+,k_-,k'_+,k'_-\rangle \}\) and the basis provided by \(f^{l}_n\otimes (f^{l'}_{n'})^*\), given by

$$\begin{aligned} U: f^{|j|+1}_n\otimes \left( f^{|j'|+1}_{n'}\right) ^* \mapsto&(-1)^{n'}|k_+,k_-,k'_+,k'_-\rangle \quad \mathrm {where} \nonumber \\&2 n=k_++k_--|j|\, , \quad j=k_+-k_- \, , \nonumber \\&2 n'=k'_++k'_--|j'|\, , \quad j'=-k'_++k'_- . \end{aligned}$$
(93)

In this representation the Master Constraint is a differential operator [22], whose eigenfunctions are of the form

$$\begin{aligned} f_{k,j,j'}(z_1,\overline{z}_2,t)=f_{k,j,j'}(z_1\overline{z}_2,t)\,z_1^{\frac{1}{2}(k-|j|+|j'|)}, \end{aligned}$$
(94)

where the solutions that are regular at \(z=0\), with \(z:=z_1\overline{z}_2\), are

$$\begin{aligned}&f_{k,j,j'}(z,t)=(1-z)^{1-t-\frac{1}{2}(|j|+|j'|+2)}\nonumber \\&\quad \times F\Big (1-t+\frac{1}{2}(-|j|+|j'|),1-t+\frac{1}{2}k,1+\frac{1}{2}(k-|j|+|j'|);z\Big ), \end{aligned}$$
(95)

for \(k-|j|+|j'|\ge 0\), and

$$\begin{aligned}&f_{k,j,j'}(z,t)=(1-z)^{1-t-\frac{1}{2}(|j|+|j'|+2)} z^{\frac{1}{2}(-k+|j|-|j'|)} \nonumber \\&\quad \times F\Big (1-t-\frac{1}{2}k,1-t+\frac{1}{2}(|j|-|j'|),1+\frac{1}{2}(-k+|j|-|j'|);z\Big ), \end{aligned}$$
(96)

for \(k-|j|+|j'|\le 0\), being \(t=\frac{1}{2}(1+\sqrt{1-\lambda +2k^2}),\, \mathrm {Re}(t) \ge \frac{1}{2}\) and \(F(a,b,c;z)\) the hypergeometric function [33].

Finally, we can use the map \(U\) in (93) to transfer these results to the original kinematical Hilbert space \({\fancyscript{L}}^2(\mathbb {R}^4)\). To this end we rewrite (94) into a power series in \(z_1\) and \(\overline{z}_2\) using the definition of the hypergeometric function

$$\begin{aligned} F(a,b,c\,;z)=\frac{\varGamma (c)}{\varGamma (a)\varGamma (b)}\sum _{n=0}\frac{\varGamma (a+n)\varGamma (b+n)}{\varGamma (c+n)\varGamma (1+n)}z^n, \end{aligned}$$
(97)

and

$$\begin{aligned} (1-z)^{1-d}=\sum _{n=0}\frac{\varGamma (d+n-1)}{\varGamma (d-1)\varGamma (n+1)}z^n. \end{aligned}$$
(98)

For \(k-|j|+|j'|\ge 0\) we obtain

$$\begin{aligned} f(t;k,j,j')&=U\Big (f_{k,j,j'}(z_1,\overline{z}_2,t)\Big )\nonumber \\&=\sum _{m=0} a_m \,|k_+(m),k_-(m),k'_+(m),k'_-(m)\rangle , \end{aligned}$$
(99)

where

$$\begin{aligned} k_+(m)&=m+\frac{1}{2}(k+j+|j'|),\quad k_-(m)=m+\frac{1}{2}(k-j+|j'|), \nonumber \\ k'_+(m)&=m+\frac{1}{2}(|j'|-j'),\quad k'_-(m)=m+\frac{1}{2}(|j'|+j'), \end{aligned}$$
(100)

and

$$\begin{aligned} a_m&=(-1)^m \left[ \mu _{(|j|+1)}\Big (m+\frac{1}{2}(k-|j|+|j'|) \Big )\right] ^{\frac{1}{2}} \left[ \mu _{(|j'|+1)}(m )\right] ^{\frac{1}{2}} \,\, \nonumber \\&\quad \times \frac{\varGamma \Big (1+\frac{1}{2}(k-|j|+|j'|) \Big )}{\varGamma \Big (1-t+\frac{1}{2}(-|j|+|j'|) \Big )\varGamma \Big (1-t+\frac{1}{2}k \Big )} \,\,\nonumber \\&\quad \times \,\sum _{l=0}^m \frac{\varGamma \Big (1-t+\frac{1}{2}(-|j|+|j'|)+l \Big ) \varGamma \Big (1-t+\frac{1}{2}k+l \Big )}{\varGamma \Big (1+\frac{1}{2}(k-|j|+|j'|)+l \Big )\varGamma \Big (1+l \Big )}\nonumber \\&\quad \times \frac{\varGamma \Big (t+\frac{1}{2}(|j|+|j'|) +(m-l)\Big )}{\varGamma \Big (m-l+1\Big )\varGamma \Big (t+\frac{1}{2}(|j|+|j'|) \Big )} . \end{aligned}$$
(101)

It is worth comment that replacing \(k\) with \(-k\), switching \(|j|\) and \(|j'|\) and multiplying with \((-1)^{\frac{1}{2}(-k+|j|-|j'|)}\), we obtain the coefficient \(a_m\) for the solution corresponding to \(k-|j|+|j'|\le 0\).

1.1 Normalizable eigenfunctions of \(\hat{H}\):

Let us focus on the normalizable eigenfunctions of \(\hat{H}\) fulfilling the condition \(2t<|k|<\lambda ^H_\mathrm{discr}\). More precisely, we will start with those such that \(k-|j|+|j'|\ge 0\). Since \(|j|-|j'|=\pm 2t\) and \(|k|>2t\), i.e. \(k\pm 2t>0\), the only possibility is that of \(k>0\). If we substitute this in (95) we get

$$\begin{aligned} f_{\pm }(z)=(1-z)^{-t\mp t-|j'|}F\left( 1-t\mp t,1-t+\frac{1}{2}k,1\mp t+\frac{1}{2}k;z\right) , \end{aligned}$$
(102)

where

$$\begin{aligned}&f_{+}(z)=(1-z)^{-2t-|j'|}F\left( 1-2t,1-t+\frac{1}{2}k,1- t+\frac{1}{2}k;z\right) \nonumber \\&\quad =(1-z)^{-|j'|-1}=\sum _{l=0}\frac{\varGamma \left( |j'|+l+1\right) }{\varGamma \left( |j'|+1\right) \varGamma \left( l+1\right) }z^{l}, \end{aligned}$$
(103)

and

$$\begin{aligned} f_{-}(z)&=(1-z)^{-|j'|}F\left( 1,1-t+\frac{1}{2}k,1+ t+\frac{1}{2}k;z\right) \nonumber \\&=\frac{\varGamma \left( 1+t+\frac{1}{2}k\right) }{\varGamma \left( 1-t+\frac{1}{2}k\right) }\sum _{n,l=0}\frac{\varGamma \left( 1-t+\frac{1}{2}k+n\right) }{\varGamma \left( 1+t+\frac{1}{2}k+n\right) }\frac{\varGamma \left( |j'|+l\right) }{\varGamma \left( |j'|\right) \varGamma \left( l+1\right) }z^{n+l}. \end{aligned}$$
(104)

In each case, the corresponding eigenfunction (94) is

$$\begin{aligned} f_{+}(z_1,\bar{z}_2)&=f_{+}(z_1\bar{z}_2)z_1^{\frac{1}{2}k-t}=\sum _{l=0}\frac{\varGamma \left( |j'|+l+1\right) }{\varGamma \left( |j'|+1\right) \varGamma \left( l+1\right) }{\bar{z}}_2^{l}\,z_1^{l-t+\frac{1}{2}k}, \end{aligned}$$
(105)

and

$$\begin{aligned} f_{-}(z_1,\bar{z}_2)&=f_{-}(z_1\bar{z}_2)z_1^{\frac{1}{2}k+t}=\frac{\varGamma \left( 1+t+\frac{1}{2}k\right) }{\varGamma \left( 1-t+\frac{1}{2}k\right) }\nonumber \\&\quad \times \sum _{n,l=0}\frac{\varGamma \left( 1-t+\frac{1}{2}k+n\right) }{\varGamma \left( 1+t+\frac{1}{2}k+n\right) }\frac{\varGamma \left( |j'|+l\right) }{\varGamma \left( |j'|\right) \varGamma \left( l+1\right) }\bar{z}_2^{n+l}\,z_1^{n+l+t+\frac{1}{2}k}. \end{aligned}$$
(106)

Let us now consider the case in which \(k-|j|+|j'|\le 0\). Again, \(|j|-|j'|=\pm 2t\) and \(|k|>2t\). Since \(k\pm 2t<0\), we conclude that \(k<0\). Implementing all this in (96)

$$\begin{aligned}&f_{\pm }(z)=(1-z)^{-t\mp t-|j'|}z^{\pm t-\frac{1}{2}k}\times F\left( 1-t-\frac{1}{2}k,1-t\mp t,1\mp t-\frac{1}{2}k;z\right) \nonumber \\&\quad =(1-z)^{-t\mp t-|j'|}z^{\pm t+\frac{1}{2}|k|}F\left( 1-t+\frac{1}{2}|k|,1-t\mp t,1\mp t+\frac{1}{2}|k|;z\right) , \end{aligned}$$
(107)

or more specifically

$$\begin{aligned} f_{+}(z)&=(1-z)^{-2t-|j'|}z^{t+\frac{1}{2}|k|}F\left( 1-t+\frac{1}{2}|k|,1,1+ t+\frac{1}{2}|k|;z\right) \nonumber \\&=\frac{\varGamma \left( 1+t+\frac{1}{2}|k|\right) }{\varGamma \left( 1-t+\frac{1}{2}|k|\right) }\nonumber \\&\quad \times \sum _{n,l=0}\frac{\varGamma \left( 1-t+\frac{1}{2}|k|+n\right) }{\varGamma \left( 1+t+\frac{1}{2}|k|+n\right) }\frac{\varGamma \left( 2t +|j'|+l\right) }{\varGamma \left( 2t+|j'|\right) \varGamma \left( l+1\right) } z^{n+l+t+\frac{1}{2}|k|}, \end{aligned}$$
(108)

and

$$\begin{aligned}&f_{-}(z)=(1-z)^{-|j'|}z^{-t+\frac{1}{2}|k|}F\left( 1-t+\frac{1}{2}|k|,1-2t,1- t+\frac{1}{2}|k|;z\right) \nonumber \\&\quad =(1-z)^{2t-|j'|-1}z^{-t+\frac{1}{2}|k|}=\sum _{l=0}\frac{\varGamma \left( |j'|-2t+l+1\right) }{\varGamma \left( |j'|-2t+1\right) \varGamma \left( l+1\right) }z^{l+\frac{1}{2}|k|-t}. \end{aligned}$$
(109)

The corresponding eigenfunctions—see (94)—are

$$\begin{aligned}&f_{+}(z_1,\bar{z}_2)=f_{+}(z_1\bar{z}_2)z_1^{-\frac{1}{2}|k|-t}=\frac{\varGamma \left( 1+t+\frac{1}{2}|k|\right) }{\varGamma \left( 1-t+\frac{1}{2}|k|\right) }\nonumber \\&\quad \times \sum _{n,l=0}\frac{\varGamma \left( 1-t+\frac{1}{2}|k|+n\right) }{\varGamma \left( 1+t+\frac{1}{2}|k|+n\right) }\frac{\varGamma \left( 2t+|j'|+l\right) }{\varGamma \left( 2t+|j'|\right) \varGamma \left( l+1\right) }z_1^{n+l}\,\bar{z}_2^{n+l+t+\frac{1}{2}|k|}, \end{aligned}$$
(110)

and

$$\begin{aligned} f_{-}(z_1,\bar{z}_2)&=f_{-}(z_1\bar{z}_2)z_1^{-\frac{1}{2}|k|+t}\nonumber \\&=\sum _{l=0}\frac{\varGamma \left( |j'|-2t+l+1\right) }{\varGamma \left( |j'|-2t+1\right) \varGamma \left( l+1\right) }z_1^{l}\,{\bar{z}}_2^{l-t+\frac{1}{2}|k|}. \end{aligned}$$
(111)

The last step in our calculations consists of applying the unitary transformation (93) to the previous functions, and normalize them. The resulting eigenfunctions now read

$$\begin{aligned} f_\pm (t,k,j,j') = \sum _{m=0} a_{\pm ,m} |k_+(m),k_-(m),k'_+(m),k'_-(m)\rangle , \end{aligned}$$
(112)

with the coefficients \(a_m\) given by

  1. (a)

    \(k-|j|+|j'|\ge 0\) and \(|j|-|j'|=2t\),

    $$\begin{aligned} a_{+,m}&=(-1)^{m}\left[ \mu _{(|j'|+2t+1)}\left( m-t+\frac{1}{2}k\right) \right] ^{\frac{1}{2}} \left[ \mu _{(|j'|+1)}(m )\right] ^{\frac{1}{2}}\nonumber \\&\quad \times \frac{\varGamma \left( |j'|+m+1\right) }{\varGamma \left( |j'|+1\right) \varGamma \left( m+1\right) }. \end{aligned}$$
    (113)
  2. (b)

    \(k-|j|+|j'|\ge 0\) and \(|j|-|j'|=-2t\),

    $$\begin{aligned}&a_{-,m}=(-1)^m\left[ \mu _{(|j'|-2t+1)}\left( m+t+\frac{1}{2}k\right) \right] ^{\frac{1}{2}} \left[ \mu _{(|j'|+1)}(m )\right] ^{\frac{1}{2}} \nonumber \\&\quad \times \frac{\varGamma \left( 1+t+\frac{1}{2}k\right) }{\varGamma \left( 1-t+\frac{1}{2}k\right) }\sum _{l=0}^m\frac{\varGamma \left( 1-t+\frac{1}{2}k+l\right) }{\varGamma \left( 1+t+\frac{1}{2}k+l\right) }\frac{\varGamma \left( |j'|+m-l\right) }{\varGamma \left( |j'|\right) \varGamma \left( m-l+1\right) }. \end{aligned}$$
    (114)
  3. (c)

    \(k-|j|+|j'|\le 0\) and \(|j|-|j'|=2t\),

    $$\begin{aligned}&a_{+,m}=(-1)^m\left[ \mu _{(|j'|+2t+1)}\left( m\right) \right] ^{\frac{1}{2}} \left[ \mu _{(|j'|+1)}(m+t+\frac{1}{2}|k| )\right] ^{\frac{1}{2}} \nonumber \\&\times \frac{\varGamma \left( 1+t+\frac{1}{2}|k|\right) }{\varGamma \left( 1-t+\frac{1}{2}|k|\right) }\sum _{l=0}^{m}\frac{\varGamma \left( 1-t+\frac{1}{2}|k|+l\right) }{\varGamma \left( 1+t+\frac{1}{2}|k|+l\right) }\frac{\varGamma \left( 2t+|j'|+m-l\right) }{\varGamma \left( 2t+|j'|\right) \varGamma \left( m-l+1\right) }. \end{aligned}$$
    (115)
  4. (d)

    \(k-|j|+|j'|\le 0\) and \(|j|-|j'|=-2t\),

    $$\begin{aligned} a_{-,m}&=(-1)^m\left[ \mu _{(|j'|-2t+1)}\left( m\right) \right] ^{\frac{1}{2}} \left[ \mu _{(|j'|+1)}(m-t+\frac{1}{2}|k| )\right] ^{\frac{1}{2}}\nonumber \\&\quad \times \frac{\varGamma \left( |j'|-2t+m+1\right) }{\varGamma \left( |j'|-2t+1\right) \varGamma \left( m+1\right) }. \end{aligned}$$
    (116)

The normalized eigenfunctions are finally defined as

$$\begin{aligned} |j,j'\rangle _{t,k}:= \sum _{m=0}\tilde{a}_m |k_+(m),k_-(m),k'_+(m),k'_-(m)\rangle , \end{aligned}$$
(117)

with

$$\begin{aligned} \tilde{a}_m =a_m\left( \sum _{l=0}|a_l|^2\right) ^{-1}. \end{aligned}$$
(118)

The states belonging to the infrarred spectrum of \(\hat{H}\) solve the three constraints \(\hat{H}_\pm \) and \(\hat{D}\) when quantum corrections of the Planck order are neglected.

1.2 Algebraic quantization and physical states

Given the solutions (94) to the Master Constraint, one can ask which is the relation between the states annihilated by \(\hat{M}\) and the solutions (19) found within the Algebraic Quantization approach.

They can be easily computed by means of (94) just solving the equation \(\hat{M} \varPsi =0\). In this case, we set \(t=1\) and \(k=0\) in (94). After applying the map (93), the resulting solutions are

$$\begin{aligned} \!\!f(t=1;k=0,j=m,j'=\varepsilon m)= \sum _{l=0} (-1)^l |k_+(l),k_-(l),k'_+(l),k'_-(l)\rangle , \end{aligned}$$
(119)

where \(f(t=1;k=0,j=m,j'=\varepsilon m)=\varPsi _{m,\varepsilon }\). These states solve simultaneously the three constraints \(\hat{H}_\pm \) and \(\hat{D}\). Nevertheless, they do not belong to \({\fancyscript{H}}_\mathrm{kin}\). Hence additional considerations are necessary in order to endow them with Hilbert space structure.

Appendix 2: Constraint observable algebra

In this appendix we will study several properties of the quantum constraints \(\hat{H}_+\) and \(\hat{D}\) defined in Eq. (38). In particular, we are interested in the determination of their action on the eigenfunctions of \(\hat{H}\). This space of states {\(|q_3,p_3\rangle _{tk}\)} or {\(|x,k,q_3,p_3\rangle \)} is characterized by the eigenvalue of the Casimir \(\hat{\fancyscript{C}}\) which are labeled by \(t\) or \(x\), depending if it corresponds to the discrete or the continuous spectrum; \(k\), which is the eigenvalue of the constraint \(\hat{H}_-\); and \(\lambda _H\), the eigenvalue of the Hamiltonian \(\hat{H}\). For simplicity, we will restrict the study to {\(|q_3,p_3\rangle _{tk}\)}, but the very same conclusions are also valid for {\(|x,k,q_3,p_3\rangle \)}.

Since the quantum constraints fulfill the commutation relations (30), it seems natural to introduce the ladder operators

$$\begin{aligned} \hat{K}_\pm = \hat{H}_+\pm i\hat{D}. \end{aligned}$$
(120)

Their commutators with the constraint \(\hat{H}_-\) can be straightforwardly deduced by means of the commutation relations (30), yielding

$$\begin{aligned}{}[\hat{H}_-,\hat{K}_\pm ]=\pm 2\hat{K}_\pm . \end{aligned}$$
(121)

Now, using these commutators, one can easily conclude that the operators \(\hat{K}_\pm \) acting on states of the form \(|q_3,p_3\rangle _{tk}\) shift the label \(k\) in two units, that is,

$$\begin{aligned} H_-(\hat{K}_\pm |q_3,p_3\rangle _{tk})=(k\pm 2)\hat{K}_\pm |q_3,p_3\rangle _{tk}. \end{aligned}$$
(122)

Moreover, the square of the norms of \(\hat{K}_\pm |q_3,p_3\rangle _{tk}\) fulfill

$$\begin{aligned} ||\hat{K}_\pm |q_3,p_3\rangle _{tk}||^2=(2\lambda _h-k^2\pm 2k)||\;|q_3,p_3\rangle _{tk}||^2. \end{aligned}$$
(123)

This result, together with the relations (38) and the reality of the coefficients \(\tilde{a}_{m}\) in Eq. (117) for the normalized eigenfunctions \(|q_3,p_3\rangle _{tk}\), allow us to conclude that the action of the operators \(\hat{K}_\pm \) is given by

$$\begin{aligned} \hat{K}_\pm |q_3,p_3\rangle _{tk}=(-1)^{r_\pm (q_3,p_3,k,t)}\sqrt{2\lambda _h-k^2\pm 2k}|q_3,p_3\rangle _{t(k\pm 2 )}, \end{aligned}$$
(124)

with \(r_\pm (q_3,p_3,k,t)\) some integers that can depend on the corresponding quantum numbers, such that \(r_\pm (q_3,p_3,k,t)+r_\mp (q_3,p_3,k\pm 2,t)\) are even integers. It is worth commenting that the action of \(\hat{K}_\pm \) on the eigenstates {\(|q_3,p_3\rangle _{tk}\)} with \(k=\pm 2t\), respectively, is by annihilation. For the generalized eigenfunctions {\(|x,k,q_3,p_3\rangle \)}, it only happens for \(k=\pm 1\) and \(x=0\).

Now, a straightforward calculation allows us to conclude that

$$\begin{aligned} \hat{H}_+=\frac{1}{2}(\hat{K}_++\hat{K}_-),\quad \hat{D} = \frac{i}{2}(\hat{K}_--\hat{K}_+). \end{aligned}$$
(125)

Therefore, the action of the constraints on the solution space provided by condition (59) mixes states with labels \(k\pm 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambini, R., Olmedo, J. The \({\varvec{SL}}(2,\mathbb {R})\) totally constrained model: three quantization approaches. Gen Relativ Gravit 46, 1768 (2014). https://doi.org/10.1007/s10714-014-1768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1768-1

Keywords

Navigation