The \({\varvec{SL}}(2,\mathbb {R})\) totally constrained model: three quantization approaches

Research Article
  • 70 Downloads

Abstract

We provide a detailed comparison of the different approaches available for the quantization of a totally constrained system with a constraint algebra generating the non-compact \(SL(2,\mathbb {R})\) group. In particular, we consider three schemes: the Refined Algebraic Quantization, the Master Constraint Programme and the Uniform Discretizations approach. For the latter, we provide a quantum description where we identify semiclassical sectors of the kinematical Hilbert space. We study the quantum dynamics of the system in order to show that it is compatible with the classical continuum evolution. Among these quantization approaches, the Uniform Discretizations provides the simpler description in agreement with the classical theory of this particular model, and it is expected to give new insights about the quantum dynamics of more realistic totally constrained models such as canonical general relativity.

Keywords

Quantum foundations Totally constrained systems Canonical general relativity Uniform Discretizations 

Notes

Acknowledgments

This work was supported in part by PEDECIBA (Uruguay) and the Spanish MEC Project FIS2011-30145-C03-02. The authors acknowledge to G. A. Mena Marugán for helpful discussions.

References

  1. 1.
    Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)Google Scholar
  2. 2.
    Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar
  5. 5.
    Ashtekar, A.: Lectures on Non-perturbative Canonical Gravity. World Scientific, New Jersey (1991)CrossRefMATHGoogle Scholar
  6. 6.
    Ashtekar, A., Tate, R.S.: An algebraic extension of Dirac quantization: examples. J. Math. Phys. 35, 6434 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mena Marugán, G.A.: Involutions on the algebra of physical observables from reality conditions. J. Math. Phys 37, 196 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J., Thiemann, T.: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Giulini, D., Marolf, D.: On the generality of refined algebraic quantization. Class. Quantum Gravity 16, 2479 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Giulini, D., Marolf, D.: A uniqueness theorem for constraint quantization. Class. Quantum Gravity 16, 2489 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Marolf, D.: Quantum observables and recollapsing dynamics. Class. Quantum Gravity 12, 1199 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Marolf, D.: Observables and a Hilbert space for Bianchi IX. Class. Quantum Gravity 12, 1441 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Marolf, D.: Almost ideal clocks in quantum cosmology: a brief derivation of time. Class. Quantum Gravity 12, 2469 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rendall, A.D.: Unique determination of an inner product by adjointness relations in the algebra of quantum observables. Class. Quantum Gravity 10, 2261 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rendall, A.D.: Adjointness relations as a criterion for choosing an inner product. Lect. Not. Phys. 434, 319 (1994)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Thiemann, T.: The Phoenix Project: master constraint programme for loop quantum gravity. Class. Quantum Gravity 23, 2211 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Thiemann, T.: Quantum spin dynamics: VIII. The master constraint. Class. Quantum Gravity 23, 2249 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems. Class. Quantum Gravity 23, 1067 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: I. General framework. Class. Quantum Gravity 23, 1025 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: IV. Free field theories. Class. Quantum Gravity 23, 1121 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: V. Interacting field theories. Class. Quantum Gravity 23, 1143 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity: III. \(SL(2,\mathbb{R})\) models. Class. Quantum Gravity 23, 1089 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Campiglia, M., Di Bartolo, C., Gambini, R., Pullin, J.: Uniform discretizations: a new approach for the quantization of totally constrained systems. Phys. Rev. D 74, 124012 (2006)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Campiglia, M., Di Bartolo, C., Gambini, R., Pullin, J.: Uniform discretizations: a quantization procedure for totally constrained systems including gravity. J. Phys. Conf. Ser. 67, 012020 (2007)CrossRefGoogle Scholar
  25. 25.
    Gambini, R., Pullin, J.: Canonical quantization of general relativity in discrete space–times. Phys. Rev. Lett. 90, 021301 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Di Bartolo, C., Gambini, R., Pullin, J.: Canonical quantization of constrained theories on discrete spacetime lattices. Class. Quantum Gravity 19, 5275 (2002)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Gambini, R., Pullin, J.: Classical and quantum general relativity: a new paradigm. Gen. Relativ. Gravit. 37, 1689 (2005) [Int. J. Mod. Phys. D 14, 2355 (2005)]Google Scholar
  28. 28.
    Montesinos, M., Rovelli, C., Thiemann, T.: \(SL(2,\mathbb{R})\) model with two Hamiltonian constraints. Phys. Rev. D 60, 044009 (1999)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Gambini, R., Porto, R.A.: Relational time in generally covariant quantum systems: four models. Phys. Rev. D 63, 105014 (2001)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Trunk, M.: An \(SL(2,\mathbb{R})\) model of constrained systems: algebraic constrained quantization. University of Freiburg THEP 99/3. Preprint. hep-th/9907056 (1999)
  31. 31.
    Louko, J., Rovelli, C.: Refined algebraic quantization in the oscillator representation of \(SL(2,\mathbb{R})\). J. Math. Phys. 41, 132 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Louko, J., Molgado, A.: Group averaging in the (p, q) oscillator representation of \(SL(2,\mathbb{R})\). J. Math. Phys. 45, 1919 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Abramowitz, M., Stegun, I.A.: Hypergeometric functions. In: Abramowitz, M., Stegun, I.A. (eds) Handbook of Mathematical Functions. NBS Applied Mathematics Series, chap. 15, vol. LV, 9th edn. U.S. GPO, Washington DC (1970)Google Scholar
  34. 34.
    Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42, 8 (1990)CrossRefGoogle Scholar
  35. 35.
    Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 2 (1991)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Gambini, R., Porto, R., Pullin, J.: A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence. New J. Phys. 6, 45 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de FísicaFacultad de CienciasMontevideoUruguay

Personalised recommendations