Skip to main content

Advertisement

Log in

Application of 3-D Electromagnetic Inversion in Practice: Challenges, Pitfalls and Solution Approaches

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 27 February 2021

This article has been updated

Abstract

In recent years, three-dimensional (3-D) inversion of electromagnetic (EM) data gained a lot of attention and the number of 3-D EM case studies has increased. Many publications discuss the challenges and advancements of 3-D inversion with respect to the numerical aspects and often show synthetic studies to prove their assumptions. On the other hand, field data have other/additional demands than synthetic data sets. There are challenges and requirements to fulfil along the entire sequence from survey planning to interpretation. To obtain a meaningful and reliable interpretation it is not sufficient to only be aware of and address issues with respect to one step along this sequence. Ideally one should be concerned with all or at least most of them, because many of these challenges are related to or even consequences of each other. Not all issues when dealing with field data can be solved, but one should at least be aware of the consequences of unavoidable shortcomings as this knowledge may be crucial for interpretation. With the intention to raise awareness, this review comprises a variety of difficulties related to the data acquisition, the numerical part—preparation for and performance of 3-D inversion—and the interpretation itself, when dealing with field data sets. The majority of published work on 3-D EM inversion of field data is related to magnetotellurics; nevertheless, there are also aspects discussed that are specific to other EM methods or illustrate different ideas to deal with challenges (e.g., airborne and controlled-source EM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Change history

References

  • Andréis D, MacGregor L (2011) Using CSEM to monitor production from a complex 3D gas reservoir—a synthetic case study. Lead Edge 30(9):1070–1079. https://doi.org/10.1016/j.geothermics.2010.01.002

    Article  Google Scholar 

  • Árnason K (2015) The static shift problem in MT soundings. In: Proceedings world geothermal congress 2015, Melbourne, Australia, 19–25 April 2015

  • Árnason K, Eysteinsson H, Hersir GP (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area. SW Iceland. Geothermics 39(1):13–34. https://doi.org/10.1016/j.geothermics.2010.01.002

    Article  Google Scholar 

  • Avdeev D (2005) Three-dimensional electromagnetic modelling and inversion from theory to application. Surv Geophys 26(6):767–799. https://doi.org/10.1007/s10712-005-1836-x

    Article  Google Scholar 

  • Avdeeva A, Moorkamp M (2015) Imaging the Kemaliye geothermal reservoir using three-dimensional magnetotelluric inversion with full distortion correction. In: AGU Fall Meeting, San Francisco, 14–18 December, NS34A-04

  • Avdeeva A, Moorkamp M, Avdeev D, Jegen M, Miensopust M (2015) Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix. Geophys J Int 202(1):464–481. https://doi.org/10.1093/gji/ggv144

    Article  Google Scholar 

  • Avdeeva A, Jegen M, Moorkamp M, Franz G (2016) Three-dimensional resistivity image of off-shore magmatism at the Walvis Ridge and Rift Basin. In: MT3DINV-3 workshop, 16–18 Mai, Bari, Italy

  • Bedrosian PA (2007) MT+, integrating magnetotellurics to determine earth structure, physical state, and processes. Surv Geophys 28(2):121–167. https://doi.org/10.1007/s10712-007-9019-6

    Article  Google Scholar 

  • Bedrosian PA, Feucht DW (2014) Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data. Earth Planet Sci Lett 402:275–289. https://doi.org/10.1016/j.epsl.2013.07.035 (reprinted figures with permission from Elsevier)

    Article  Google Scholar 

  • Berdichevsky MN, Dmitriev VI (1976a) Basic principles of interpretation of magnetotelluric sounding curves. In: Adam A (ed) Geoelectric and geothermal studies, KAPG geophysical monograph. Akadémiai Kiadó, Budapest, pp 165–221

    Google Scholar 

  • Berdichevsky MN, Dmitriev VI (1976b) Distortion of magnetic and electrical fields by near-surface lateral inhomogeneities. Acta Geod Geophys Montan Acad Sci Hung 11:447–483

    Google Scholar 

  • Berdichevsky MN, Bezruk IA, Chinavera OM (1973) Magnetotelluric sounding with the use of mathematical filters. Izv Akad Nauk SSSR Fiz Zeml 3:72–92 (in Russian)

    Google Scholar 

  • Bertrand EA, Caldwell TG, Hill GJ, Wallin EL, Bennie SL, Cozens N, Onacha SA, Ryan GA, Walter C, Zaino A, Wameyo P (2012a) Magnetotelluric imaging of upper-crustal convection plumes beneath the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 39(2):L02304. https://doi.org/10.1029/2011GL050177 (published on behalf of the American Geophysical Union by Wiley Periodicals)

  • Bertrand EA, Unsworth MJ, Chiang CW, Chen CS, Chen CC, Wu FT, Türkoğlu E, Hsu HL, Hill GJ (2012b) Magnetotelluric imaging beneath the Taiwan orogen: an arc-continent collision. J Geophys Res Solid Earth 117(B1). https://doi.org/10.1029/2011JB008688,b01402

  • Bertrand E, Caldwell T, Bannister S, Soengkono S, Bennie S, Hill G, Heise W (2015) Using array MT data to image the crustal resistivity structure of the southeastern Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 305:63–75. https://doi.org/10.1016/j.jvolgeores.2015.09.020 (reprinted figure with permission from Elsevier)

    Article  Google Scholar 

  • Bhuyian AH, Landrø M, Johansen SE (2012) 3D CSEM modeling and time-lapse sensitivity analysis for subsurface CO2 storage. Geophysics 77(5):E343–E355. https://doi.org/10.1190/geo2011-0452.1

    Article  Google Scholar 

  • Bibby H, Caldwell T, Davey F, Webb T (1995) Taupo Volcanic Zone, New Zealand geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geoth Res 68(1):29–58. https://doi.org/10.1016/0377-0273(95)00007-H

    Article  Google Scholar 

  • Bibby HM, Caldwell TG, Brown C (2005) Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys J Int 163(3):915–930. https://doi.org/10.1111/j.1365-246X.2005.02779.x

    Article  Google Scholar 

  • Binley A, Henry-Poulter S, Shaw B (1996) Examination of solute transport in an undisturbed soil column using electrical resistance tomography. Water Resour Res 32(4):763–769. https://doi.org/10.1029/95WR02995

    Article  Google Scholar 

  • Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403. https://doi.org/10.1038/nature02565

    Article  Google Scholar 

  • Börner RU (2010) Numerical modelling in geo-electromagnetics: advances and challenges. Surv Geophys 31(2):225–245. https://doi.org/10.1007/s10712-009-9087-x

    Article  Google Scholar 

  • Bostick FX (1977) A simple almost exact method of MT analysis. In: Workshop on electrical methods in geothermal exploration, US Geological Survey Contract No 14080001-8-359

  • Burd AI, Booker JR, Mackie R, Pomposiello C, Favetto A (2013) Electrical conductivity of the Pampean shallow subduction region of Argentina near 33\(^\circ \)s: evidence for a slab window. Geochem Geophys Geosyst 14(8):3192–3209. https://doi.org/10.1002/ggge.20213

    Article  Google Scholar 

  • Burd AI, Booker JR, Mackie R, Favetto A, Pomposiello MC (2014) Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5\(^\circ \)S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys J Int 198(2):812–827. https://doi.org/10.1093/gji/ggu145

    Article  Google Scholar 

  • Buselli G (1982) The effect of near-surface superparamagnetic material on electromagnetic measurements. Geophysics 47(9):1315–1324. https://doi.org/10.1190/1.1441392

    Article  Google Scholar 

  • Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158(2):457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x

    Article  Google Scholar 

  • Candansayar ME, Tezkan B (2008) Two-dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophys Prospect 56(5):737–749. https://doi.org/10.1111/j.1365-2478.2008.00695.x

    Article  Google Scholar 

  • Cembrowski M, Junge A, Hering P, Vilamajó E (2016) Waiting for the storm geomagnetic activity and its influence on the magnetotelluric transfer functions. Abstract S1.2-P176, 23rd electromagnetic induction in the earth workshop, Chiang Mai, Thailand

  • Chave AD (2012) Estimation of the magnetotelluric response function. In: Chave AD, Jones AG (eds) The magnetotelluric method—theory and practice, chapter 5, Cambridge University Press, Cambridge, pp 165–218

  • Chave AD (2017) Estimation of the magnetotelluric response function: the path from robust estimation to a stable Maximum Likelihood Estimator. Surv Geophys. https://doi.org/10.1007/s10712-017-9422-6

    Google Scholar 

  • Chave AD, Jones AG (1997) Electric and magnetic field galvanic distortion decomposition of BC87 data. J Geomagn Geoelectr 49:767–789

    Article  Google Scholar 

  • Chave AD, Smith JT (1994) On electric and magnetic galvanic distortion tensor decompositions. J Geophys Res (Solid Earth) 99(B3):4669–4682

    Article  Google Scholar 

  • Chave AD, Thomson DJ, Ander ME (1987) On the robust estimation of power spectra, coherences, and transfer functions. J Geophys Res Solid Earth 92(B1):633–648. https://doi.org/10.1029/JB092iB01p00633

    Article  Google Scholar 

  • Commer M, Newman GA (2009) Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion. Geophys J Int 178(3):1305–1316. https://doi.org/10.1111/j.1365-246X.2009.04216.x

    Article  Google Scholar 

  • Commer M, Newman GA, Carazzone JJ, Dickens TA, Green KE, AWahrmund L, EWillen D, Shiu J (2008) Massively parallel electrical-conductivity imaging of hydrocarbons using the IBM BlueGene/L supercomputer. IBM J Res Dev 52(1/2):93–103

    Article  Google Scholar 

  • Commer M, Hoversten GM, Um ES (2015) Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure. Geophysics 80(2):E147–E162. https://doi.org/10.1190/geo2014-0324.1

    Article  Google Scholar 

  • Constable S (1993) Constraints on mantle electrical conductivity from field and laboratory measurements. J Geomagn Geoelectr 45(9):707–728. https://doi.org/10.5636/jgg.45.707

    Article  Google Scholar 

  • Constable S (2016) Geophysical inversion: which model do you want? SEG/AAPG fall distinguished lecture tour. http://marineemlab.ucsd.edu/~steve/SEGDL/

  • Constable S, Srnka LJ (2007) An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72(2):WA3–WA12. https://doi.org/10.1190/1.2432483

    Article  Google Scholar 

  • Constable S, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods. Part II—modeling and analysis in 3D. Geophysics 71(6):G321–G332. https://doi.org/10.1190/1.2356908

    Article  Google Scholar 

  • Constable S, Key K, Lewis L (2009) Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data. Geophys J Int 176(2):431. https://doi.org/10.1111/j.1365-246X.2008.03975.x

    Article  Google Scholar 

  • Constable S, Orange A, Key K (2015) And the geophysicist replied: “which model do you want?” Geophysics 80(3):E197–E212. https://doi.org/10.1190/geo2014-0381.1

    Article  Google Scholar 

  • Cox C (1980) Electromagnetic induction in the oceans and inferences on the constitution of the earth. Geophys Surv 4(1):137–156. https://doi.org/10.1007/BF01452963

    Article  Google Scholar 

  • Cox L, Endo M, Siemon B, Zhdanov M (2015) Large-scale 3D inversion of airborne modeling electromagnetic data based on the hybrid IE-FE method and the moving sensitivity domain approach. IN: 14th SAGA biennial conference & exhibition

  • Cox LH, Wilson GA, Zhdanov MS (2012) 3D inversion of airborne electromagnetic data using a moving footprint. Explor Geophys 41:250–259. https://doi.org/10.1071/EG10003

    Article  Google Scholar 

  • Cumming W, Mackie R (2010) Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a Glass Mountain case history. In: Proceedings world geothermal congress 2010, Bali, Indonesia, 25–29 April 2010

  • Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442. https://doi.org/10.1029/91WR03087

    Article  Google Scholar 

  • de Groot-Hedlin C (1991) Short notice: removal of static shift in two dimensions by regularized inversion. Geophysics 56(12):2102–2106

    Article  Google Scholar 

  • de Groot-Hedlin C (1995) Inversion for regional 2-D resistivity structure in the presence of galvanic scatterers. Geophys J Int 122:877–888

    Article  Google Scholar 

  • Egbert GD, Booker JR (1986) Robust estimation of geomagnetic transfer functions. Geophys J Roy Astron Soc 87(1):173–194. https://doi.org/10.1111/j.1365-246X.1986.tb04552.x

    Article  Google Scholar 

  • Egbert GD, Kelbert A (2012) Computational recipes for electromagnetic inverse problems. Geophys J Int 189(1):251–267. https://doi.org/10.1111/j.1365-246X.2011.05347.x

    Article  Google Scholar 

  • Farquharson CG, Craven JA (2009) Three-dimensional inversion of magnetotelluric data for mineral exploration: an example from the McArthur River uranium deposit, Saskatchewan. Canada. J Appl Geophys 68(4):450–458. https://doi.org/10.1016/j.jappgeo.2008.02.002

    Article  Google Scholar 

  • Ferguson IJ (2012) Instrumentation and field procedures. In: Chave AD, Jones AG (eds) The magnetotelluric method—theory and practice, chapter 9. Cambridge University Press, Cambridge, pp 421–479

  • Fischer G (1979) Electromagnetic induction effects at an ocean coast. Proc IEEE 67(7):1050–1060. https://doi.org/10.1109/PROC.1979.11388

    Article  Google Scholar 

  • Fischer G, LeQuang BV, Müller I (1983) VLF ground surveys, a powerful tool for the study of shallow two-dimensional structures. Geophys Prospect 31:977–991

    Article  Google Scholar 

  • Fitterman DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51(4):995–1005. https://doi.org/10.1190/1.1442158

    Article  Google Scholar 

  • Fullea J (2017) On joint modelling of electrical conductivity and other geophysical and petrological observables to infer the structure of the lithosphere and underlying upper mantle. Surv Geophys. https://doi.org/10.1007/s10712-017-9432-4

    Google Scholar 

  • Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30(13). https://doi.org/10.1029/2003GL017370, 1658

  • Garcia X, Jones AG (2002) Decomposition of three-dimensional magnetotelluric data. In: Zhdanov MS, Wannamaker PE (eds) Three-dimensional electromagnetics, methods in geochemistry and geophysics, vol 35, chapter 13, Elsevier, Amsterdam, pp 235–250. ISBN: 0-444-50429-X

  • Garcia X, Jones AG (2008) Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform. Geophysics 73(6):F223–F234. https://doi.org/10.1190/1.2987375

    Article  Google Scholar 

  • Garcia X, Seillé H, Elsenbeck J, Evans RL, Jegen M, Hölz S, Ledo J, Lovatini A, Marti A, Marcuello A, Queralt P, Ungarelli C, Ranero CR (2015) Structure of the mantle beneath the Alboran Basin from magnetotelluric soundings. Geochem Geophys Geosyst 16(12):4261–4274. https://doi.org/10.1002/2015GC006100 (published on behalf of the American Geophysical Union by Wiley Periodicals)

    Article  Google Scholar 

  • Gasperikova E, Newman G, Feucht D, Arnason K (2011) 3D MT characterization of two geothermal fields in Iceland. Geotherm Res Counc Transact 35:1667–1671

    Google Scholar 

  • Girard JF, Coppo N, Rohmer J, Bourgeois B, Naudet V, Schmidt-Hattenberger C (2011) Time-lapse CSEM monitoring of the Ketzin (Germany) CO2 injection using 2xMAM configuration. Energy Procedia 4:3322–3329. https://doi.org/10.1016/j.egypro.2011.02.253

    Article  Google Scholar 

  • Gist G, Ciucivara A, Houck R, Rainwater M, Willen D, Zhou JJ (2013) Case study of a CSEM false positive—Orphan Basin, Canada. In: SEG technical program expanded abstracts 2013, chapter 157, pp 805–809. https://doi.org/10.1190/segam2013-0307.1

  • Grayver AV (2013) Three-dimensional controlled-source electromagnetic inversion using modern computational concepts. PhD thesis, Free University of Berlin

  • Grayver AV (2015) Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study. Geophys J Int 202(1):584–603. https://doi.org/10.1093/gji/ggv165

    Article  Google Scholar 

  • Grayver AV, Kolev TV (2015) Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method. Geophysics 80(6):E277–E291. https://doi.org/10.1190/geo2015-0013.1

    Article  Google Scholar 

  • Grayver AV, Streich R, Ritter O (2014) 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation. Geophysics 79(2):E101–E114. https://doi.org/10.1190/geo2013-0184.1

    Article  Google Scholar 

  • Groom RW, Bailey RC (1991) Analytic investigations of the effects of near-surface three-dimensional glavanic scatterers on MT tensor decompositions. Geophysics 56(4):496–518

    Article  Google Scholar 

  • Haber E, Heldmann S (2007) An octree multigrid method for quasi-static Maxwell’s equations with highly discontinuous coefficients. J Comput Phys 223:783–796

    Article  Google Scholar 

  • Haber E, Holtham E, Granek J, Marchant D, Oldenburg D, Schwarzbach C, Shekhtman R (2012) An adaptive mesh method for electromagnetic inverse problems. https://doi.org/10.1190/segam2012-0828.1 (SEG Las Vegas 2012 annual meeting)

  • He Z, Hu Z, Luo W, Wang C (2010) Mapping reservoirs based on resistivity and induced polarization derived from continuous 3d magnetotelluric profiling: case study from Qaidam basin, China. Geophysics 75(1):B25–B33. https://doi.org/10.1190/1.3279125

    Article  Google Scholar 

  • Heidlauf DT, Hsui AT, dev Klein G (1986) Tectonic subsidence analysis of the Illinois Basin. J Geol 94(6):779–794

    Article  Google Scholar 

  • Heise W, Pous J (2001) Effects of anisotropy on the two-dimensional inversion procedure. Geophys J Int 147(3):610–621. https://doi.org/10.1046/j.0956-540x.2001.01560.x

    Article  Google Scholar 

  • Heise W, Bibby HM, Caldwell TG, Bannister SC, Ogawa Y, Takakura S, Uchida T (2007) Melt distribution beneath a young continental rift: the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 34(14). https://doi.org/10.1029/2007GL029629, l14313

  • Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone. New Zealand. Geophys J Int 173(2):740–750. https://doi.org/10.1111/j.1365-246X.2008.03737.x

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bennie SL (2010) Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand. Geophys Res Lett 37(10):L10301. https://doi.org/10.1029/2010GL043110 (published on behalf of the American Geophysical Union by Wiley Periodicals)

  • Heise W, Caldwell TG, Bertrand EA, Hill GJ, Bennie SL, Ogawa Y (2013) Changes in electrical resistivity track changes in tectonic plate coupling. Geophys Res Lett 40(19):5029–5033. https://doi.org/10.1002/grl.50959,2013GL057640

    Article  Google Scholar 

  • Heise W, Caldwell T, Bertrand E, Hill G, Bennie S, Palmer N (2016) Imaging the deep source of the Rotorua and Waimangu geothermal fields, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 314:39–48. https://doi.org/10.1016/j.jvolgeores.2015.10.017

  • Hewson-Browne RC, Kendall PC (1976) Magnetotelluric modelling and inversion in three-dimensions. Acta Geod Geophys Montan Acad Sci Hung 11:427–446

    Google Scholar 

  • Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RA (2009) Distribution of melt beneath Mount St Hellens and Mount Adams inferred from magnetotelluric data. Nat Geosci 2:785–789

    Article  Google Scholar 

  • Holtham E, Oldenburg D (2012) Practical issues of inverting 3D natural source electromagnetic data. In: Lane RJL (ed) Natural Fields EM Forum 2012: Abstracts from the ASEG Natural Fields EM Forum 2012, Geoscience Australia, Geoscience Australia Record 2012/04

  • Hunziker JW (2012) Marine controlled-source electromagnetic interferometry. PhD thesis, Technische Universiteit Delft

  • Ingham MR, Bibby HM, Heise W, Jones KA, Cairns P, Dravitzki S, Bennie SL, Caldwell TG, Ogawa Y (2009) A magnetotelluric study of Mount Ruapehu volcano. New Zealand. Geophys J Int 179(2):887–904. https://doi.org/10.1111/j.1365-246X.2009.04317.x

    Article  Google Scholar 

  • Ivanov PV, Pushkarev PY (2010) Possibilities of interpretation of the magnetotelluric data, obtained on a single profile over 3D resistivity structures. Izv Phys Solid Earth 46(9):727–734

    Article  Google Scholar 

  • Ivanov PV, Pushkarev PY (2012) Three-dimensional inversion of the single-profile magnetotelluric data. Izv Phys Solid Earth 48(11–12):871–876

    Article  Google Scholar 

  • Jegen M, Avdeeva A, Berndt C, Franz G, Heincke B, Hölz S, Neska A, Marti A, Planert L, Chen J, Kopp H, Baba K, Ritter O, Weckmann U, Meqbel N, Behrmann J (2016) 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin. Tectonophysics 683:98–108. https://doi.org/10.1016/j.tecto.2016.06.016 (reprinted figure with permission from Elsevier)

    Article  Google Scholar 

  • Jiracek GR (1990) Near-surface and topographic distortions in electromagnetic induction. Surv Geophys 11(2–3):163–203. https://doi.org/10.1007/BF01901659

    Article  Google Scholar 

  • Johansen SE, Amundsen H, Røsten T, Ellingsrud S, Eidesmo T, Bhuiyan AH (2005) Subsurface hydrocarbons detected by electromagnetic sounding. First Break 23(3):31–36. https://doi.org/10.3997/1365-2397.2005005

    Google Scholar 

  • Jones AG (1983) The problem of current channelling: a critical review. Geophys Surv 6(1–2):79–122. https://doi.org/10.1007/BF01453996

    Article  Google Scholar 

  • Jones AG (1993a) The BC87 dataset: tectonic setting, previous EM results, and recorded MT data. J Geomagn Geoelectr 45:1089–1105

    Article  Google Scholar 

  • Jones AG (1993b) The COPROD2 dataset: tectonic setting, recorded MT data and comparison of models. J Geomagn Geoelectr 45:933–955

    Article  Google Scholar 

  • Jones AG (2012) Distortion of magnetotelluric data: its identification and removal. In: Chave AD, Jones AG (eds) The magnetotelluric method—theory and practice, chapter 6. Cambridge University Press, Cambridge, pp 219–302

  • Jones AG, Chave AD, Egbert G, Auld D, Bahr K (1989) A comparison of techniques for magnetotelluric response function estimation. J Geophys Res Solid Earth 94(B10):14201–14213. https://doi.org/10.1029/JB094iB10p14201

    Article  Google Scholar 

  • Jones AG, Vozar J, Queralt P, Miensopust M, Siniscalchi A, Romano G, Mackie R, the 3D MT modellers (2016) The 3D secret model DSM3: model geometry, responses, and inverted models from MT code writers and code users. In: 23rd electromagnetic induction workshop, Chiang Mai, Thailand, 14–20 August 2016

  • Junge A (1996) Characterization of and correction for cultural noise. Surv Geophys 17(4):361–391. https://doi.org/10.1007/BF01901639

    Article  Google Scholar 

  • Kalscheuer T, De los Ángeles García Juanatey M, Meqbel N, Pedersen LB (2010) Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophys J Int 182(3):1174–1188. https://doi.org/10.1111/j.1365-246X.2010.04686.x

    Article  Google Scholar 

  • Kelbert A, Schultz A, Egbert G (2009) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460:1003–1006. https://doi.org/10.1038/nature08257

    Article  Google Scholar 

  • Kelbert A, Egbert GD, deGroot Hedlin C (2012) Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track. Geology 40(5):447–450. https://doi.org/10.1130/G32655.1

    Article  Google Scholar 

  • Kelbert A, Meqbel N, Egbert GD, Tandon K (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Comput Geosci 66:40–53. https://doi.org/10.1016/j.cageo.2014.01.010

    Article  Google Scholar 

  • Key K (2016) MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys J Int 207(1):571. https://doi.org/10.1093/gji/ggw290

    Article  Google Scholar 

  • Key K, Constable S (2011) Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan. Phys Earth Planet Inter 184(3–4):194–207. https://doi.org/10.1016/j.pepi.2010.11.008

    Article  Google Scholar 

  • Key K, Ovall J (2011) A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys J Int 186(1):137. https://doi.org/10.1111/j.1365-246X.2011.05025.x

    Article  Google Scholar 

  • Khan A, Shankland T (2012) A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett 317–318:27–43. https://doi.org/10.1016/j.epsl.2011.11.031

    Article  Google Scholar 

  • Knaak A, Snieder R, Súilleabháin LÓ, Fan Y, Ramirez-Mejia D (2015) Optimized 3D synthetic aperture for controlled-source electromagnetics. Geophysics 80(6):E309–E316. https://doi.org/10.1190/geo2014-0348.1

    Article  Google Scholar 

  • LaBrecque DJ, Yang X (2001) Difference inversion of ERT data: a fast inversion method for 3-D in situ monitoring. J Environ Eng Geophys 6(2):83–89. https://doi.org/10.4133/JEEG6.2.83

    Article  Google Scholar 

  • Ledo J (2005) 2-D versus 3-D magnetotelluric data interpretation. Surv Geophys 26(5):511–543. https://doi.org/10.1007/s10712-005-1757-8

    Article  Google Scholar 

  • Ledo J, Queralt P, Marcuello A, Garcia-Yeguas A, Piña-Varas P, Prudencio I, Diaz A, Ibañez J (2016) Fuzzy-logic clustering of 3d magnetotelluric and seismic velocity models: Tenerife Island (Spain). In: International conference and exhibition, Barcelona, Spain, 3–6 April 2016, pp 85–85. https://doi.org/10.1190/ice2016-6312042.1

  • Lee T (1981) Transient electromagnetic response of a polarizable ground. Geophysics 46(7):1037–1041. https://doi.org/10.1190/1.1441241

    Article  Google Scholar 

  • Lien M, Mannseth T (2008) Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics 73(4):F151–F163. https://doi.org/10.1190/1.2938512

    Article  Google Scholar 

  • Lilley FEM (2015) The distortion tensor of magnetotellurics: a tutorial on some properties. Explor Geophys 47:85–99. https://doi.org/10.1071/EG14093

    Article  Google Scholar 

  • Lindsey NJ, Newman GA (2015) Improved workflow for 3D inverse modeling of magnetotelluric data: examples from five geothermal systems. Geothermics 53:527–532. https://doi.org/10.1016/j.geothermics.2014.09.004 (reprinted figure with permission from Elsevier)

    Article  Google Scholar 

  • Löwer A (2014) Magnetotellurische Erkundung geologischer Großstrukturen des südwestlichen Vogelsberges mit anisotroper, dreidimensionaler Modellierung der Leitfähigkeitsstrukturen. PhD thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main (in German)

  • MacGregor L, Barker N, Overton A, Moody S, Bodecott D (2007) Derisking exploration prospects using integrated seismic and electromagnetic data—a Falkland Islands case study. Lead Edge 26(3):356–359. https://doi.org/10.1190/1.2715059

    Article  Google Scholar 

  • Mackie R, Watts MD (2012) Detectability of 3-D sulphide targets with AFMAG. In: SEG technical program expanded abstracts 2012, chapter 257, pp 1–4. https://doi.org/10.1190/segam2012-1248.1

  • Mansoori I, Oskooi B, Pedersen L, Javaheri R (2016) Three-dimensional modelling of magnetotelluric data to image Sehqanat hydrocarbon reservoir in southwestern Iran. Geophys Prospect 64(3):753–766. https://doi.org/10.1111/1365-2478.12328

    Article  Google Scholar 

  • Martí A (2014) The role of electrical anisotropy in magnetotelluric responses: from modelling and dimensionality analysis to inversion and interpretation. Surv Geophys 35(1):179–218. https://doi.org/10.1007/s10712-013-9233-3

    Article  Google Scholar 

  • Martí A, Queralt P, Ledo J (2009) WALDIM: a code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor. Comput Geosci 35:2295–2303. https://doi.org/10.1016/j.cageo.2009.03.004

    Article  Google Scholar 

  • Meqbel N, Ritter O (2015) Joint 3D inversion of multiple electromagnetic datasets. Geophys Prospect 63(6):1450–1467. https://doi.org/10.1111/1365-2478.12334

    Article  Google Scholar 

  • Meqbel N, Egbert G, Wannamaker P, Kelbert A, Schultz A (2014) Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data. Earth Planet Sci Lett 402(C):290–304. https://doi.org/10.1016/j.epsl.2013.12.026 (reprinted figures with permission from Elsevier)

    Article  Google Scholar 

  • Meqbel N, Weckmann U, Muñoz G, Ritter O (2016) Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2D and 3D magnetotelluric modelling. Geophys J Int 207(3):1609–1629. https://doi.org/10.1093/gji/ggw359

    Article  Google Scholar 

  • Miensopust MP (2010) Multidimensional magnetotellurics—a 2D case study and a 3d approach to simultaneously invert for resistivity structure and distortion parameters. PhD thesis, National University of Ireland, Galway

  • Miensopust MP, Queralt P, Jones AG, the 3D MT modellers (2013) Magnetotelluric 3-D inversion - a review of two successful workshops on forward and inversion code testing and comparison. Geophys J Int 193(3):1216–1238. https://doi.org/10.1093/gji/ggt066

  • Miensopust MP, Jones AG, Hersir GP, Vilhjálmsson AM (2014) The Eyjafjallajökull volcanic system, Iceland: insights from electromagnetic measurements. Geophys J Int 199(2):1187–1204. https://doi.org/10.1093/gji/ggu322

    Article  Google Scholar 

  • Moorkamp M (2017) Integrating electromagnetic data with other geophysical observations for enhanced imaging of the earth: a tutorial and review. Surv Geophys. https://doi.org/10.1007/s10712-017-9413-7

    Google Scholar 

  • Moorkamp M, Avdeeva A, Erdogan E, Basokur A (2016) Three-dimensional magnetotelluric inversion with distortion correction, practical experience and solution recipes. EGU General Assembly, Vienna, Austria

    Google Scholar 

  • Mulder W (2006) A multigrid solver for 3D electromagnetic diffusion. Geophys Prospect 54(5):633–649. https://doi.org/10.1111/j.1365-2478.2006.00558.x

    Article  Google Scholar 

  • Myer D, Constable S, Key K (2011) Broad-band waveforms and robust processing for marine CSEM surveys. Geophys J Int 184(2):689–698. https://doi.org/10.1111/j.1365-246X.2010.04887.x

    Article  Google Scholar 

  • Nechaev O, Shurina E, Botchev M (2008) Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation. Comput Math Appl 55(10):2346–2362. https://doi.org/10.1016/j.camwa.2007.11.003

    Article  Google Scholar 

  • Newman GA (2013) A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data. Surv Geophys 35(1):85–100. https://doi.org/10.1007/s10712-013-9260-0

    Article  Google Scholar 

  • Newman GA, Alumbaugh DL (2000) Three-dimensional magnetotelluric inversion using non-linear conjugate gradients. Geophys J Int 140(2):410–424. https://doi.org/10.1046/j.1365-246x.2000.00007.x

    Article  Google Scholar 

  • Newman GA, Boggs PT (2004) Solution accelerators for large-scale three-dimensional electromagnetic inverse problems. Inverse Prob 20(6):S151–S170

    Article  Google Scholar 

  • Newman GA, Recher S, Tezkan B, Neubauer FM (2003) 3D inversion of a scalar radio magnetotelluric field data set. Geophysics 68(3):791–802. https://doi.org/10.1190/1.1581032

    Article  Google Scholar 

  • Newman GA, Gasperikova E, Hoversten GM, Wannamaker PE (2008) Three-dimensional magnetotelluric characterization of the Coso geothermal field. Geothermics 37(4):369–399. https://doi.org/10.1016/j.geothermics.2008.02.006

    Article  Google Scholar 

  • Newman GA, Commer M, Carazzone JJ (2010) Imaging CSEM data in the presence of electrical anisotropy. Geophysics 75(2):F51–F61. https://doi.org/10.1190/1.3295883

    Article  Google Scholar 

  • Niblett ER, Sayn-Wittgenstein C (1960) Variation of electrical conductivity with depth by the magneto-telluric method. Geophysics 25(5):998–1008. https://doi.org/10.1190/1.1438799

    Article  Google Scholar 

  • Ó Súilleabháin L, Rosenquist M, Johnson J, Plessix R-É, Rensbergen PV, Sebayang D (2012) Anisotropic inversion of CSEM data from offshore Malaysia. In: Technical program expanded abstracts 2012, SEG, pp 1–5. https://doi.org/10.1190/segam2012-0726.1

  • Ogawa Y (2002) On two-dimensional modeling of magnetotelluric field data. Surv Geophys 23(2–3):251–273. https://doi.org/10.1023/A:1015021006018

    Article  Google Scholar 

  • Ogawa Y, Uchida T (1996) A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys J Int 126(1):69–76. https://doi.org/10.1111/j.1365-246X.1996.tb05267.x

    Article  Google Scholar 

  • Oldenburg D (1990) Inversion of electromagnetic data: an overview of new techniques. Surv Geophys 11(2–3):231–270. https://doi.org/10.1007/BF01901661

    Article  Google Scholar 

  • Oldenburg D, Yang D, Haber E (2013a) New strategies for faster 3D inversion of airborne EM data. In: 6th international AEM conference & exhibition

  • Oldenburg DW, Haber E, Shekhtman R (2013b) Three dimensional inversion of multisource time domain electromagnetic data. Geophysics 78(1):E47–E57. https://doi.org/10.1190/geo2012-0131.1

    Article  Google Scholar 

  • Olsen N (1999) Long-period (30 days-1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys J Int 138(1):179–187. https://doi.org/10.1046/j.1365-246x.1999.00854.x

    Article  Google Scholar 

  • Orange A, Key K, Constable S (2009) The feasibility of reservoir monitoring using time-lapse marine CSEM. Geophysics 74(2):F21–F29. https://doi.org/10.1190/1.3059600

    Article  Google Scholar 

  • Oristaglio M, Spies B (eds) (1999) Three-dimensional electromagnetics, geophyscial developments, vol 7. SEG. ISBN: 1-56080-079-8

  • Padilha AL, Vitorello Í, Antunes CE, Pádua MB (2015) Imaging three-dimensional crustal conductivity structures reflecting continental flood basalt effects hidden beneath thick intracratonic sedimentary basin. J Geophys Res Solid Earth 120(7):4702–4719. https://doi.org/10.1002/2014JB011657

    Google Scholar 

  • Patzer C, Tietze K, Ritter O (2017) Steel-cased wells in 3-D controlled source EM modelling. Geophys J Int 209(2):813–826. https://doi.org/10.1093/gji/ggx049

    Article  Google Scholar 

  • Patro PK, Egbert GD (2008) Regional conductivity structure of Cascadia: preliminary results from 3D inversion of USArray transportable array magnetotelluric data. Geophys Res Lett 35(20). https://doi.org/10.1029/2008GL035326,l20311

  • Patro PK, Egbert GD (2011) Application of 3D inversion to magnetotelluric profile data from the Deccan Volcanic Province of Western India. Phys Earth Planet Inter 187(1–2):33–46. https://doi.org/10.1016/j.pepi.2011.04.005 (reprinted figures with permission from Elsevier)

    Article  Google Scholar 

  • Patro PK, Sarma S (2016) Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies. Earth Planet Sci Lett 451:168–176. https://doi.org/10.1016/j.epsl.2016.07.005

    Article  Google Scholar 

  • Patro PK, Uyeshima M, Siripunvaraporn W (2013) Three-dimensional inversion of magnetotelluric phase tensor data. Geophys J Int 192(1):58–66. https://doi.org/10.1093/gji/ggs014

    Article  Google Scholar 

  • Pellerin L, Hohmann GW (1990) Transient electromagnetic inversion: a remedy for magnetotelluric static shift. Geophysics 55(9):1242–1250

    Article  Google Scholar 

  • Poll HE, Weaver JT, Jones AG (1989) Calculations of voltages for magnetotelluric modelling of a region with near-surface inhomogeneities. Phys Earth Planet Inter 53:287–297

    Article  Google Scholar 

  • Puzyrev V, Koric S, Wilkin S (2016) Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems. Comput Geosci 89:79–87. https://doi.org/10.1016/j.cageo.2016.01.009

    Article  Google Scholar 

  • Raiche A, Bennet A, Clark P, Smith R (1985) The use of Cole–Cole impedances to interpret the TEM response of layered earths. In: 4th ASEG conference

  • Ranganayaki RP, Madden TR (1980) Generalized thin sheet analysis in magnetotellurics: an extension of Price’s analysis. Geophys J Int 60(3):445

    Article  Google Scholar 

  • Robertson K, Heinson G, Thiel S (2016) Lithospheric reworking at the Proterozoic–Phanerozoic transition of Australia imaged using AusLAMP magnetotelluric data. Earth Planet Sci Lett 452:27–35. https://doi.org/10.1016/j.epsl.2016.07.036

    Article  Google Scholar 

  • Rödder A, Tezkan B (2013) A 3D resistivity model derived from the transient electromagnetic data observed on the Araba fault, Jordan. J Appl Geophys 88:42–51. https://doi.org/10.1016/j.jappgeo.2012.09.009

    Article  Google Scholar 

  • Roos P, Burgess H, Ward I (2007) Updated mineral resource and reserve estimate, Cerro De Maimón Project, Msnr. Noul Province, Dominican Republic. Technical report NI 43-101 for GlobeStar Mining Corporation

  • Scheunert M, Ullmann A, Afanasjew M, Börner RU, Siemon B, Spitzer K (2016) A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data- I. 3-D inversion using the explicit Jacobian and a tensor-based formulation. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2016.03.023

  • Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter 103:17–31. https://doi.org/10.1016/S0031-9201(97)00011-3

    Article  Google Scholar 

  • Scholl C, Neumann J, Watts MD (2015) Geo-steered 3D inversion of airborne electromagnetic data in rugged terrain. In: Near surface geoscience, First European Airborne Electromagnetics Conference, Turin, Italy, 6–10 September 2015. https://doi.org/10.3997/2214-4609.201413864

  • Schultz A, Egbert GD, Kelbert A, Peery T, Clote V, Fry B, Erofeeva S (2006–2018) Staff of the National Geoelectromagnetic Facility and their contractors. USArray TA Magnetotelluric Transfer Functions. https://doi.org/10.17611/DP/EMTF/USARRAY/TA

  • Schultz A, Egbert GD, Kelbert A, Peery T, Clote V, Fry B, Erofeeva S (2008–2013) Staff of the national geoelectromagnetic facility and their contractors. USArray BB Magnetotelluric Transfer Functions. https://doi.org/10.17611/DP/EMTF/USARRAY/BB

  • Sengpiel KP, Siemon B (2000) Advanced inversion methods for airborne electromagnetic exploration. Geophysics 65(6):1983–1992. https://doi.org/10.1190/1.1444882

    Article  Google Scholar 

  • Siemon B, Auken E, Christiansen AV (2009) Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data. J Appl Geophys 67(3):259–268. https://doi.org/10.1016/j.jappgeo.2007.11.003

    Article  Google Scholar 

  • Siripunvaraporn W (2011) Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surv Geophys 33(1):5–27. https://doi.org/10.1007/s10712-011-9122-6

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G (2009) WSINV3DMT: vertical magnetic field transfer function inversion and parallel implementation. Phys Earth Planet Inter 173(3–4):317–329. https://doi.org/10.1016/j.pepi.2009.01.013

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G, Lenbury Y, Uyeshima M (2005a) Three-dimensional magnetotelluric inversion: data-space method. Phys Earth Planet Inter 150(1–3):3–14. https://doi.org/10.1016/j.pepi.2004.08.023

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G, Uyeshima M (2005) Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion: synthetic examples. Geophys J Int 160(3):804–814. https://doi.org/10.1111/j.1365-246X.2005.02527.x

    Article  Google Scholar 

  • Sleep NH, Sloss LL (1978) A deep borehole in the Michigan Basin. J Geophys Res Solid Earth 83(B12):5815–5819. https://doi.org/10.1029/JB083iB12p05815

    Article  Google Scholar 

  • Ślęzak K, Jóźwiak W, Nowozyński K, Brasse H (2016) 3-D inversion of MT data for imaging deformation fronts in NW Poland. Pure Appl Geophys 1–12. https://doi.org/10.1007/s00024-016-1275-2

  • Smith JT (1997) Estimating galvanic-distortion magnetic fields in magnetotellurics. Geophys J Int 130(1):65–72. https://doi.org/10.1111/j.1365-246X.1997.tb00988.x

    Article  Google Scholar 

  • Stark MA, Soyer W, Hallinan S, Watts MD (2013) Distortion effects on magnetotelluric sounding data investigated by 3D modeling of high-resolution topography. Geotherm Resour Counc Trans 37:521–527

    Google Scholar 

  • Sternberg BK, deGroot Hedlin C (1993) Removal of static shift in two dimensions by regularized inversion; discussion and reply. Geophysics 58(4):598–599. https://doi.org/10.1190/1.1443444

    Article  Google Scholar 

  • Sternberg BK, Washburne JC, Pellerin L (1988) Correction for the static shift in magnetotellurics using transient electromagnetic soundings. Geophysics 53(11):1459–1468. https://doi.org/10.1190/1.1442426

    Article  Google Scholar 

  • Streich R, Becken M (2011) Electromagnetic fields generated by finite-length wire sources: comparison with point dipole solutions. Geophys Prospect 59(2):361–374. https://doi.org/10.1111/j.1365-2478.2010.00926.x

    Article  Google Scholar 

  • Streich R, Becken M, Ritter O (2013) Robust processing of noisy land-based controlled-source electromagnetic data. Geophysics 78(5):E237–E247. https://doi.org/10.1190/geo2013-0026.1

    Article  Google Scholar 

  • Szarka L (1988) Geophysical aspects of man-made electromagnetic noise in the earth—a review. Surv Geophys 9(3):287–318. https://doi.org/10.1007/BF01901627

    Article  Google Scholar 

  • Tang W, Li Y, Swidinsky A, Liu J (2015) Three-dimensional controlled-source electromagnetic modelling with a well casing as a grounded source: a hybrid method of moments and finite element scheme. Geophys Prospect 63(6):1491–1507. https://doi.org/10.1111/1365-2478.12330

    Article  Google Scholar 

  • Thiel S, Heinson G (2013) Electrical conductors in Archean mantle—result of plume interaction? Geophys Res Lett 40(12):2947–2952. https://doi.org/10.1002/grl.50486

    Article  Google Scholar 

  • Thiel S, Heinson G, Mudge C, Chandrasekhar P, Alexander B (2012) 3D magnetotelluric inversion using cloud computing. In: Lane RJL (ed) Natural Fields EM Forum 2012: abstracts from the ASEG Natural Fields EM Forum 2012, Published by Geoscience Australia, Geoscience Australia Record 2012/04. ISBN: 978-1-921954-67-2

  • Thiel S, Heinson G, Reid A, Robertson K, (2016) Insights into lithospheric architecture, fertilisation and fluid pathways from AusLAMP MT. In: ASEG-PESA-AIG 2016, 25th geophysical conference & exhibition, 21–24 August. Adelaide, Australia

  • Tietze K, Ritter O (2013) Three-dimensional magnetotelluric inversion in practice-the electrical conductivity structure of the San Andreas Fault in Central California. Geophys J Int. 195(1):130–147. https://doi.org/10.1093/gji/ggt234

    Article  Google Scholar 

  • Tietze K, Ritter O, Egbert GD (2015a) 3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions. Geophys J Int 203(2):1128–1148. https://doi.org/10.1093/gji/ggv347

    Article  Google Scholar 

  • Tietze K, Ritter O, Veeken P (2015b) Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole-to-surface configuration. Geophys Prospect 63(6):1468–1490. https://doi.org/10.1111/1365-2478.12322

    Article  Google Scholar 

  • Tietze K, Ritter O, Patzer C, Veeken P, Verboom B (2016) Timelapse Borehole CSEM for HC-Saturation Monitoring in the Bockstedt Oilfield Onshore NW Germany. https://doi.org/10.2118/183165-MS (Society of Petroleum Engineers, Abu Dhabi International Petroleum Exhibition and Conference, 7–10 November)

  • Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Scripta series in mathematics, Winston

    Google Scholar 

  • Tuncer V, Unsworth MJ, Siripunvaraporn W, Craven JA (2006) Exploration for unconformity-type uranium deposits with audiomagnetotelluric data: a case study from the McArthur River mine, Saskatchewan. Canada. Geophysics 71(6):B201–B209. https://doi.org/10.1190/1.2348780

    Article  Google Scholar 

  • Türkoǧlu E, Unsworth M, Pana D (2009) Deep electrical structure of northern Alberta (Canada): implications for diamond exploration. Can J Earth Sci 46(2):139–154. https://doi.org/10.1139/E09-009

    Article  Google Scholar 

  • Ullmann A, Scheunert M, Afanasjew M, Börner RU, Siemon B, Spitzer K (2016) A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data-II. Combining regional 1-D and local 3-D inversion. J Appl Geophys. 130:131–144. https://doi.org/10.1016/j.jappgeo.2016.04.008 (reprinted figures with permission from Elsevier)

  • Urzúa-Monsalve L (2008) Integration of a preliminary one-dimensional MT analysis with geology and geochemistry in a conceptual model of the Ngatamariki geothermal field. M.Sc. thesis, Univesity of Auckland

  • Viezzoli A, Christiansen AV, Auken E, Sørensen K (2008) Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics 73(3):F105–F113. https://doi.org/10.1190/1.2895521

    Article  Google Scholar 

  • Vilamajó E (2016) CSEM monitoring at the Hontomín CO2 storage site: modeling, experimental design and baseline results. PhD thesis, Universitat de Barcelona

  • Vilamajó E, Queralt P, Ledo J, Marcuello A (2013) Feasibility of Monitoring the Hontomín (Burgos, Spain) CO2 Storage Site Using a Deep EM Source. Surv Geophys 34(4):441–461. https://doi.org/10.1007/s10712-013-9238-y

    Article  Google Scholar 

  • Vilamajó E, Rondeleux B, Queralt P, Marcuello A, Ledo J (2015) A land controlled-source electromagnetic experiment using a deep vertical electric dipole: experimental settings, processing, and first data interpretation. Geophys Prospect 63(6):1527–1540. https://doi.org/10.1111/1365-2478.12331

    Article  Google Scholar 

  • Vilamajó E, Puzyrev V, Queralt P, Marcuello A, Ledo J (2016) Study of the casing effect on Borehole-to-surface onshore CSEM. In: 78th EAGE conference and exhibition, 31 May, Vienna, Austria

  • Vozar J, Queralt P, Jones AG, Miensopust M, Romano G, Siniscalchi A, the 3D MT modellers (2016) The 3D forward DTM3 models benchmark studies for different MT forward solvers. In: 23rd electromagnetic induction workshop, Chiang Mai, Thailand, 14–20 August 2016

  • Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez VM, McKnight JD, Porter AD (2002) Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J Geophys Res Solid Earth 107(B6):ETG 6-1–ETG 6-20. https://doi.org/10.1029/2001JB000186

  • Watts MD (2012) Reflections on natural field EM methods. In: 22nd international geophysical conference and exhibition, 26–29 February, Brisbane, Australia

  • Watts MD, Mackie R, Scholl C, Hallinan S (2013) Limitations of MT static shift corrections using time-domain EM data. https://doi.org/10.1190/segam2013-1078.1 (SEG technical program expanded abstracts 2013)

  • Weaver JT (1994) Mathematical methods for geo-electromagnetic induction. Research Studies Press, Baldock. ISBN: 10 086380165X. ISBN: 13 9780863801655

  • Weaver JT, Agarwal AK, Lilley FEM (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141(2):321–336. https://doi.org/10.1046/j.1365-246x.2000.00089.x

    Article  Google Scholar 

  • Weitemeyer K, Gao G, Constable S, Alumbaugh D (2010) The practical application of 2D inversion to marine controlled-source electromagnetic data. Geophysics 75(6):F199–F211. https://doi.org/10.1190/1.3506004

    Article  Google Scholar 

  • Wheelock B, Constable S, Key K (2015) The advantages of logarithmically scaled data for electromagnetic inversion. Geophys J Int 201(3):1765. https://doi.org/10.1093/gji/ggv107

    Article  Google Scholar 

  • Wilt M, Williams J (1989) Layered model inversion of central-loop EM soundings near a geological contact. Explor Geophys 20:71–73

    Article  Google Scholar 

  • Wirianto M, Mulder WA, Slob EC (2010) A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophys J Int 181(2):741–755. https://doi.org/10.1111/j.1365-246X.2010.04544.x

    Google Scholar 

  • Worzewski T, Jegen M, Swidinsky A (2012) Approximations for the 2-D coast effect on marine magnetotelluric data. Geophys J Int 189(1):357–368. https://doi.org/10.1111/j.1365-246X.2012.05385.x

    Article  Google Scholar 

  • Wright D, Ziolkowski A, Hobbs B (2002) Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (mtem) survey. Lead Edge 21(9):852–864. https://doi.org/10.1190/1.1508954

    Article  Google Scholar 

  • Xiao Q, Cai X, Xu X, Liang G, Zhang B (2010) Application of the 3D magnetotelluric inversion code in a geologically complex area. Geophys Prospect 58(6):1177–1192. https://doi.org/10.1111/j.1365-2478.2010.00896.x

    Google Scholar 

  • Xu Y, Shankland TJ, Poe BT (2000) Laboratory-based electrical conductivity in the Earth’s mantle. Journal of Geophysical Research: Solid Earth 105(B12):27865–27875. https://doi.org/10.1029/2000JB900299

  • Yang B, Xu Y, Egbert G, Liu Y (2014a) 3D inversion of audiomagnetotelluric data in Baogutu copper deposit, Western Junggar, NW China. In: Extended abstract 22nd EM induction workshop, Weimar, Germany, 25–30 August

  • Yang B, Egbert GD, Kelbert A, Meqbel NM (2015) Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data. Earth Planet Sci Lett 422:87–93. https://doi.org/10.1016/j.epsl.2015.04.006 (reprinted figure with permission from Elsevier)

    Article  Google Scholar 

  • Yang D, Oldenburg DW, Haber E (2014b) 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings. Geophys J Int 196(3):1492–1507. https://doi.org/10.1093/gji/ggt465

    Article  Google Scholar 

  • Yang W, Torres-Verdín C, Hou J, Zhang ZI (2009) 1D subsurface electromagnetic fields excited by energized steel casing. Geophysics 74(4):E159–E180. https://doi.org/10.1190/1.3131382

    Article  Google Scholar 

  • Yavich N, Scholl C (2012) Advances in multigrid solution of 3D forward mCSEM problems. In: 5th Saint Petersburg international conference & exhibition—geosciences: maiking the most of the Earth’s resources, Saint Petersburg, Russia, 2–5 April 2012

  • Yoshino T, Katsura T (2013) Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu Rev Earth Planet Sci 41(1):605–628. https://doi.org/10.1146/annurev-earth-050212-124022

    Article  Google Scholar 

  • Zhdanov M, Varentsov I, Weaver J, Golubev N, Krylov V (1997) Methods for modelling electromagnetic fields results from COMMEMI—the international project on the comparison of modelling methods for electromagnetic induction. J Appl Geophys 37(3):133–271. https://doi.org/10.1016/S0926-9851(97)00013-X

    Article  Google Scholar 

  • Zhdanov M, Endo M, Black N, Spangler L, Fairweather S, Hibbs A, Eiskamp G, Will R (2013) Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break 31(2):71–78

  • Zhdanov M, Endo M, Sunwall D, Mattsson J (2015) Advanced 3D imaging of complex geoelectrical structures using towed streamer EM data over the Mariner field in the North Sea. First Break 33(11):59–63

    Google Scholar 

  • Zhdanov MS, Green A, Gribenko A, Cuma M (2010) Large-scale three-dimensional inversion of EarthScope MT data using the integral equation method. Izv Phys Solid Earth 46(8):670–678

    Article  Google Scholar 

  • Zhdanov MS, Smith RB, Gribenko A, Cuma M, Green M (2011) Three-dimensional inversion of large-scale EarthScope magnetotelluric data based on the integral equation method: geoelectrical imaging of the Yellowstone conductive mantle plume. Geophys Res Lett 38(8). 10.1029/2011GL046953,l08307

Download references

Acknowledgements

I would like to thank the IAGA Division IV and the organizing committee for the opportunity to prepare and present this review paper at the 23rd Electromagnetic Induction Workshop at Chiang Mai, Thailand. In addition, I would like to thank those within the EM community who have drawn my attention to a range of studies. I particularly would like to thank Karen R Christopherson, William Cumming, Randy Mackie and Rita Streich to share with me their experiences and challenges from a commercial point of view and Steven Constable for making his SEG/AAPG Fall Distinguished Lecture Tour 2016 presentation available. Furthermore, this review has benefited greatly from discussions with Angelika Ullmann, Raphael Dlugosch and Thomas Günther. I also thank two anonymous referees for their patient reading of this rather long manuscript and their detailed suggestions, which certainly improved this manuscript. And last but not least I would like to thank all those persons who accompanied, supported and encouraged me over many years in the ‘EM world’.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miensopust, M.P. Application of 3-D Electromagnetic Inversion in Practice: Challenges, Pitfalls and Solution Approaches. Surv Geophys 38, 869–933 (2017). https://doi.org/10.1007/s10712-017-9435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9435-1

Keywords

Navigation