Skip to main content

Advertisement

Log in

MT+, Integrating Magnetotellurics to Determine Earth Structure, Physical State, and Processes

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Wave-propagation techniques, such as ground-penetrating radar, operate at higher frequencies (100 MHz–1 GHz), have better spatial resolution than magnetotellurics, but are very limited in depth penetration (≤50 m).

  2. The converse is not necessarily true. For example, along a symmetry axis of a three-dimensional conductivity distribution, the electromagnetic field, and hence the impedance tensor, may exhibit a lower dimensionality.

  3. The forward problem involves calculating the surface electric and magnetic fields expected for a given subsurface conductivity distribution.

  4. An automated, random structure modification algorithm has been suggested by Muñoz and Rath (2006).

  5. Regularization is itself a constraint on the inversion, though it is global rather than localized in its extent.

  6. The calculated pre-eruptive water content of silicic magmas is on the order of 2.5–6.5 wt%, suggesting they originate at depth in water-undersaturated melt conditions (Burnham 1997).

  7. Conductivity anomalies within subduction zones and sutures are sometimes attributed to serpentinite, a product of low-temperature mafic metamorphism. Though waters released during dehydration may be conductive, the conductivity of serpentinite itself is moderate, rising to only 0.01 S/m at dehydration temperatures of 560°C (P = 600 MPa, Bruhn et al. 2004). Higher conductivities have been reported (Stesky and Brace 1973), but may be attributed to unusually high porosity or grain-boundary magnetite within the measured samples.

  8. Fluids at hydrostatic pressure have been encountered in several deep drill holes (Kremenetsky and Ovchinikov, 1986; Boresvsky et al. 1995; Emmerman and Lauterjung 1997) and fracture permeability is believed to increase markedly with measurement scale (Torgersen 1990).

  9. Pseudosections are plots of magnetotelluric response parameters, ρ a and ϕ, versus frequency and distance along a profile. As frequency is a non-linear proxy for depth, pseudosections give a crude sense of how conductivity varies within the subsurface.

  10. While seismic velocities are determined during the migration of reflection data, they are not as robust as those obtained via refraction tomography.

  11. A thermal explanation would imply that the boundary deepens with increasing plate age as the plate cools.

  12. This is sometimes referred to as cooperative inversion (Lines et al. 1988).

  13. Anomalous heat flow due to tectonic activity typically remains for ∼10 Ma following the cessation of activity.

References

  • Abraham AC, Francis D, Polvé M (2001) Recent alkaline basalts as probes of the lithospheric mantle roots of the Northern Canadian Cordillera. Chem Geol 175:361–386

    Google Scholar 

  • Ádám A (2005) Graphite/graphitic rocks as cause of the electric conductivity anomaly and their relationship to the tectonics – a review. Acta Geod Geoph Hung 40:391–411

    Google Scholar 

  • Ague J, Park J, Rye DM (1998) Regional metamorphic dehydration and seismic hazard. Geophys Res Lett 25:4221–4224

    Google Scholar 

  • Allmendinger RW, Gubbels T (1996) Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259:1–13

    Google Scholar 

  • Almeida E, Monteiro Santos F, Mateus A, Heise W, Pous J (2005) Magnetotelluric measurements in SW Iberia: new data for the Variscan crustal structures. Geophys Res Lett 32, doi:10.1029/2005GL022596

  • Alsdorf D, Nelson D (1999) Tibetan satellite magnetic low: evidence for widespread melt in the Tibetan crust? Geology 27:943–946

    Google Scholar 

  • Aprea C, Unsworth M, Booker J (1998) Resistivity structure of the Olympic Mountains and Puget Lowlands. Geophys Res Lett 25:109–112

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–62

    Google Scholar 

  • Argand E (1924) La tectonique de l’Asie. Int Geol Congr Rep Sess 13:170–373

    Google Scholar 

  • Arzate JA, Mareschal M, Livelybrooks D (1995) Electrical image of the subducting Cocos plate from magnetotelluric observations. Geology 23:703–706

    Google Scholar 

  • Aster RC, Borchers B, Thurber C (2005) Parameter estimation and inverse problems. Elsevier Academic Press, Burlington

    Google Scholar 

  • Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise at 17°S: insights from the mantle electromagnetic and tomography (MELT) experiment. J Geophys Res 111, doi:10.1029/2004JB003598

  • Bailey RC (1990) Trapping of aqueous fluids in the deep crust. Geophys Res Lett17:1129–1132

    Google Scholar 

  • Bauer K, Schulze A, Ryberg T, Sobolev SV, Weber MH (2003) Classification of lithology from seismic tomography: a case study from the Messum igneous complex, Namibia. J Geophys Res 108, doi:10.1029/2001JB001073

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel. Nature 414:738–742

    Google Scholar 

  • Bedrosian PA, Unsworth MJ, Fei W (2001) Structure of the Altyn Tagh Fault and Daxue Shan from magnetotelluric surveys: implications for faulting associated with the rise of the Tibetan Plateau. Tectonics 20:474–486

    Google Scholar 

  • Bedrosian PA, Unsworth MJ, Egbert G (2002) Magnetotelluric imaging of the creeping segment of the San Andreas Fault near Hollister. Geophys Res Lett 29, doi:10.1029/2001GL014119

  • Bedrosian P, Unsworth M, Egbert G, Thurber C (2004) Geophysical images of the creeping San Andreas Fault: implications for the role of crustal fluids in the earthquake process. Tectonophysics 358, doi:10.1016/j.tecto.2004.02.010

  • Bedrosian PA, Maercklin N, Weckmann U, Bartov Y, Ryberg T, Ritter O (2007) Lithology-derived structure classification from the joint interpretation of magnetotelluric and seismic models. Geophys J Int, doi:10.1111/j.1365-246X.2007.03440.x

  • Bercovici D, Karato S (2003) Whole mantle convection and the transition-zone water filter. Nature 425:39–43

    Google Scholar 

  • Bevington PR, Robinson DK (1992) Data reduction and error analysis for the physical sciences. McGraw-Hill Book Company, New York

    Google Scholar 

  • Boerner DE, Kurtz RD, Craven JA (1996) Electrical conductivity and Paleo-Proterozoic foredeeps. J Geophys Res 101:13775–13791

    Google Scholar 

  • Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403

    Google Scholar 

  • Borevsky L, Milanovsky S, Yakovlev L (1995) Fluid-thermal regime in the crust – superdeep drilling data. In: Barbier E, Frye G, Iglesias E, Palmason G (eds) Proceedings of the World Geothermal Congress. International Geothermal Association, Auckland, pp 975–981

  • Bosch M (1999) Lithology tomography: from plural geophysical data to lithology estimation. J Geophys Res 104:749–766

    Google Scholar 

  • Bosch M, Zamora M, Utama W (2002) Lithology discrimination from physical rock properties. Geophysics 67:573–581

    Google Scholar 

  • Brasse H, Laezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107, doi:10.1029/2001JB000391

  • Bruhn D, Siegfried R, Schilling F (2004) Electrical resistivity of dehydrating serpentinite. Paper presented at the tectonophysics session of the American Geophysical Union, San Francisco, 13–17 December 2004

  • Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, vol 63. John Wiley, New York, p 123

    Google Scholar 

  • Cagniard L (1953) Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics 18:605–635

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Google Scholar 

  • Clark M, Royden L (2000) Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28:703–706

    Google Scholar 

  • Cook FA, Jones AG (1995) Seismic reflections and electrical conductivity: a case of Holmes’s curious dog? Geology 23:141–144

    Google Scholar 

  • Crawford WC, Webb SC (2002) Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9°–10 °N. Earth Plan Sci Let 203:117–130

    Google Scholar 

  • Crawford WC, Webb SC, Hildebrand JA (1999) Constraints on melt in the lower crust and Moho at the East Pacific Rise, 9°48′ N, using seafloor compliance measurements. J Geophys Res 104:2923–2939

    Google Scholar 

  • de Groot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models for magnetotelluric data. Geophysics 55:1613–1624

    Google Scholar 

  • Dell’Aversana P (2001) Integration of seismic, MT, and gravity data in a thrust belt interpretation. First Break 19:335–341

    Google Scholar 

  • Dewey J, Burke K (1973) Tibetan, Variscan and Precambrian reactivation: product of continental collision. J Geol 81:683–692

    Article  Google Scholar 

  • Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18:1088–1107

    Google Scholar 

  • Dunn RA, Toomey DR, Solomon SC (2000) Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′ N. J Geophys Res 105:23,537–23,555

    Google Scholar 

  • Emmermann R, Lauterjung J (1997) the German Continental Deep Drilling Program KTB: overview and major results. J Geophys Res 102:18,179–18,201

    Google Scholar 

  • England PC, Houseman GA (1989) Extension during continental convergence, with application to the Tibetan Plateau. J Geophys Res 94:17,561–17,579

    Google Scholar 

  • Evans RL, Hirth G, Baba K, Forsyth D, Mackie R (2005) Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437, doi:10.1038/nature04014

  • Falgàs E, Ledo J, Benjumea B, Marcuello A, Queralt P, Teixidó T (2006) AMT and seismic assessment of a deltaic aquifer system. Paper presented at the 18th International Workshop on Electromagnetic Induction in the Earth, El Vendrell, Spain 17–23 Spain 2006

  • Finn C (1990) Geophysical constraints on Washington convergent margin structure. J Geophys Res 95:19,533–19,546

    Google Scholar 

  • Fischer MA, Nokleberg WJ, Ratchkovski NA, Pellerin L, Glen JM, Brocher TM, Booker J (2004) Geophysical investigation of the Denali fault and Alaska Range orogen within the aftershock zone of the October–November 2002, M = 7.9 Denali fault earthquake. Geology 32, doi:10.1130/G20127.1

  • Francheteau J, Jaupart C, Shen XJ, Kang WH, Lee DL, Bai JC, Wei HP, Deng HY (1984) High heat flow in Southern Tibet. Nature 307:32–36

    Google Scholar 

  • Gallardo L, Meju M (2007) Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophys J Int, doi:10.1111/j.1365-246X.2007.03366.x

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density: the diagnostic basics for stratigraphic traps. Geophysics 39:770–780

    Google Scholar 

  • Glover PWJ, Vine FJ (1995) Beyond KTB-Electrical conductivity of the deep continental crust. Surv Geophys 16:5–36

    Google Scholar 

  • Gough DI (1986) Seismic reflectors, conductivity, water and stress in the continental crust. Nature 323:143–144

    Google Scholar 

  • Grapes RH (1995) Uplift and exhumation of Alpine Schist, Southern Alps, New Zealand: thermobarometric constraints. NZ J Geol Geophys 38:525–534

    Google Scholar 

  • Guéguen Y, Palciauskas V (1994) Introduction to the physics of rocks. Princeton University Press, New Jersey

    Google Scholar 

  • Haak V, Hutton VRS (1986) Electrical resistivity in continental lower crust. In: Dawson JB (ed) The nature of the lower continental crust, vol 23. Geological Society, Special Publication, London, pp 35–49

  • Haber E, Oldenburg D (1997) Joint inversion: a structural approach. Inverse Problems 13:63–77

    Google Scholar 

  • Haberland C, Rietbrock A (2001) Attenuation tomography in the western central Andes: a detailed insight into the structure of a magmatic arc. J Geophys Res 106:11151–11167

    Google Scholar 

  • Haberland C, Rietbrock A, Schurr B, Brasse H (2003) Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau. Geophys Res Lett 30, doi:10.1029/2003GL017492

  • Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646

    Google Scholar 

  • Hashin J, Shtrikman S (1962) A variational approach to the theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Google Scholar 

  • Heinson GS, Direen NG, Gill RM (2006) Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology 34:573–576

    Google Scholar 

  • Henry S, Pollack H (1988) Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. J Geophys Res 93:15,153–15,162

    Google Scholar 

  • Hermance JF (1979) The electrical conductivity of materials containing partial melt: a simple model from Archie’s law. Geophys Res Lett 6:613–616

    Google Scholar 

  • Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis: methods for classification, data analysis and image recognition. John Wiley & Sons, Inc

  • Hoffmann-Rothe A, Ritter O, Janssen C (2004) Correlation of electrical conductivity and structural damage at a major strike-slip fault in northern Chile. J Geophys Res, doi:10.1029/2004JB003030

  • Hoversten GM, Constable SC, Morrison HF (2000) Marine magnetotellurics for base-of-salt mapping: Gulf of Mexico field test at the Gemini structure. Geophysics 65:1476–1488

    Google Scholar 

  • Hyndman RD, Hyndman DW (1968) Water saturation and high electrical conductivity in the lower continental lower crust. Earth Planet Sci Lett 4:427–432

    Google Scholar 

  • Hyndman RD, Shearer PM (1989) Water in the lower continental crust: modelling magnetotelluric and seismic reflection results. Geophys J Int 98:343–365

    Google Scholar 

  • Hyndman DW, Harris JM, Gorelick SM (1994) Coupled seismic and tracer test inversion for aquifer property characterization. Water Resour Res 30:1965–1977

    Google Scholar 

  • Irifune T, Ringwood AE (1987) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Am Geophys Union Geophys Monograph, vol 39, pp 231–242

  • Jiracek GR, Haak V, Olsen KH (1995) Practical magnetotellurics in a continental rift environment. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Developments in geotechtonics, vol 25. Elsevier Press, Amsterdam, pp 103–129

    Google Scholar 

  • Jödicke H (1992) Water and graphite in the earth’s crust – an approach to interpretation of conductivity models. Surv Geophys 13:381–407

    Google Scholar 

  • Jones AG (1987) MT and reflection: an essential combination. Geophys J R Astr Soc 89:7–18

    Google Scholar 

  • Jones AG (1992) Electrical conductivity of the continental lower crust. In: Fountain DM, Arculus RJ, Kay RW (eds) Continental lower crust. Elsevier Press, Amsterdam

    Google Scholar 

  • Jones AG (1998) Waves of the future: superior inferences from collocated seismic and electromagnetic experiments. Tectonophysics 286:273–298

    Google Scholar 

  • Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48:57–80

    Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Google Scholar 

  • Kariya KA, Shankland TJ (1983) Electrical conductivity of dry lower crustal rocks. Geophysics 48:52–61

    Google Scholar 

  • Keller (1987) Resistivity characteristics of geological targets. In: Naibighian M (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa Oklahoma, pp 13–51

    Google Scholar 

  • Key K, Constable S (2002) Broadband marine MT exploration of the East Pacific Rise at 9°50′ N. Geophys Res Lett 29, doi:10.1029/2002GL016035

  • Key K, Constable SC, Weiss CJ (2006) Mapping 3D salt using the 2D marine magnetotelluric method: case study from Gemini Prospect, Gulf of Mexico. Geophysics 71:B17–B27

    Google Scholar 

  • Kind R et al (1996) Evidence from earthquake data for a partially molten crustal layer in Southern Tibet. Science 274:1692–1694

    Google Scholar 

  • Klotz J (2000) Geodätische Untersuchungen zur Deformation aktiver Kontinentalränder. Habilitationsschrift, Fachbereich Geowissenschaften, Technical University, Berlin

  • Kremenetsky AA, Ovchinnikov LN (1986) The Precambrian continental crust: its structure, composition, and evolution as revealed by deep drilling in the USSR. Precambrian Res 33:11–43

    Google Scholar 

  • Kurtz RD, DeLaurier JM, Gupta JC (1986) A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate. Nature 321:596–599

    Google Scholar 

  • Lanczos C (1997) Linear differential operators. Dover Publications, Mineola

    Google Scholar 

  • Lebedev EB, Khitarov NI (1964) Dependence on the beginning of melting of granite and the electrical conductivity of its melt on high water vapor pressure. Geochem Int 1:193–197

    Google Scholar 

  • Ledo J, Jones AG (2005) Upper mantle temperature determined from combining mineral composition, electrical conductivity laboratory studies and magnetotelluric field observations: application to the intermontane belt, Northern Canadian Cordillera. Earth Planet Sci Lett 236:258–268

    Google Scholar 

  • Lemonnier C, Marquis G, Perrier F, Avouac J-P, Chitraker G, Kafle B, Gautam U, Tiware D, Bano M (1999) Electrical structure of the Himalaya of Central Nepal: high conductivity around the mid-crustal ramp along the MHT. Geophys Res Lett 26:3261–3264

    Google Scholar 

  • Li S, Unsworth MJ, Booker JR, Wei W, Tan H, Jones AG (2003) Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys J Int 153:289–304

    Google Scholar 

  • Linde N, Binley A, Tryggvason A, Pedersen LB, Revil A (2006) Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resour Res 42, doi:10.1029/2006WR005131

  • Lines LR, Schultz AK, Treitel S (1988) Cooperative inversion of geophysical data. Geophysics 53:8–20

    Google Scholar 

  • Luque FJ, Pasteris JD, Wopenka B, Rodas M, Barrenechea JF (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. Am J Sci 298:471–498

    Article  Google Scholar 

  • Makovsky Y, Klemperer SL (1999) Measuring the seismic properties of Tibetan bright spots: free aqueous fluid in the Tibetan middle crust. J Geophys Res 104:10,795–10,825

    Google Scholar 

  • Marquardt DW (1970) Generalized inverse, ridge regression, biased linear, and nonlinear estimation. Techtonometrics 12:591–612

    Google Scholar 

  • Marquis G, Hyndman RD (1992) Geophysical support for aqueous fluids in the deep crust: seismic and electrical relationships. Geophys J Int 110:91–105

    Google Scholar 

  • Maurer H, Holliger K, Boerner DE (1998) Stochastic regularization: smoothness or similarity? Geophys Res Lett 25, doi:/10.1029/98GL02183

  • Maercklin N (2004) Seismic structure of the Arava Fault, Dead Sea Transform. PhD. thesis, University of Potsdam, Potsdam

  • Maercklin N, Bedrosian PA, Haberland C, Ritter O, Ryberg T, Weber M, Weckmann U (2005) Characterizing a large shear-zone with seismic and magnetotelluric methods: the case of the Dead Sea Transform. Geophys Res Lett 32, doi:10.1029/2005GL022724

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proc 5th Berkeley Symp on Mathem Stat and Prob, University of California, Berkeley, 281:297

  • Manglik A, Verma SK (1998) Delineation of sediments below flood basalts by joint inversion of seismic and magnetotelluric data. Geophys Res Lett 25:4015–4018

    Google Scholar 

  • Mechie J, Sobolev SV, Ratschbacher L, Babeyko AY, Bock G, Jones AG, Nelson KD, Solon KD, Brown LD, Zhao W (2004) Precise temperature estimation in the Tibetan crust from seismic detection of the α–β quartz transition. Geology 32, doi:10.1130/G20367.1

  • Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic Press, New York

    Google Scholar 

  • Merzer AM, Klemperer SL (1992) High electrical conductivity in a model lower crust with unconnected, conductive, seismically reflective layers. Geophys J Int 108:895–905

    Google Scholar 

  • Métivier F, Gaudemer Y, Tapponnier P, Meyer B (1998) Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor Basins, China. Tectonics 17:823–842

    Google Scholar 

  • Meyer B, Tapponnier P, Boujot L, Métivier F, Gaudemer Y, Peltzer G, Shunmin G, Zhitai C (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibetan Plateau. Geophys J Int 135:1–47

    Google Scholar 

  • Molnar P (1988) A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalayas and the Karakorum and their tectonic implications. Philos Trans R Soc London Ser A 326:33–88

    Google Scholar 

  • Monteiro Santos FA, Sultan SA, Represas P, El Sorady AL (2006) Joint inversion of gravity and geoelectrical data for groundwater and structural investigation: application to the northwestern part of Sinai, Egypt. Geophys J Int 165:705–718

    Google Scholar 

  • Mosegaard K, Sambridge M (2002) Monte Carlo analysis of inverse problems. Inverse Problems 18:29–54

    Google Scholar 

  • Mosegaard K, Tarantola A (2002) Probabilistic approach to inverse problems. In: International handbook of earthquake and engineering seismology. Academic Press, San Diego

  • Muñoz G, Rath V (2006) Beyond smooth inversion: the use of nullspace projection for the exploration of non-uniqueness in MT. Geophys J Int 164:301–311

    Google Scholar 

  • Nelson KD et al (1996) Partially molten middle crust beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688

    Google Scholar 

  • Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310

    Google Scholar 

  • Nolasco R, Tarits P, Filloux J, Chave A (1998) Magnetotelluric imaging of the Society Islands hotspot. J Geophys Res 103:287–309

    Google Scholar 

  • Nover G, Stoll JB, von der Gönna J (2005) Promotion of graphite formation by tectonic stress – a laboratory stress experiment. Geophys J Int 160:1059–1067

    Google Scholar 

  • Ogawa Y, Mishina M, Goto T, Satoh H, Oshiman N, Kasaya T, Takahashi Y, Nishitani T, Sakanaka S, Uyeshima M, Takahashi Y, Honkura Y, Matsushima M (2001) Magnetotelluric imaging of fluids in intraplate earthquakes zones, NE Japan back arc. Geophys Res Lett 28:3741–3744

    Google Scholar 

  • Orange AS (1989) Magnetotelluric exploration for hydrocarbons. Proc IEEE 77:287–317

    Google Scholar 

  • Paasche H, Tronicke J (2007) Cooperative inversion of 2D geophysical data sets: a zonal approach based on fuzzy c-means cluster analysis. Geophysics 72:35–39

    Google Scholar 

  • Paasche H, Tronicke J, Holliger K, Green AG, Maurer HR (2006) Interpretation of diverse physical-property models: subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analysis. Geophysics 71:33–44

    Google Scholar 

  • Palacky GJ (1987) Resistivity characteristics of geological targets. In: Naibighian M (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa, Oklahoma, pp 53–129

    Google Scholar 

  • Park SK, Mackie RL (2000) Resistive (dry?) lower crust in an active orogen, Nanga Parbat, northern Pakistan. Tectonophysics 316:359–380

    Google Scholar 

  • Park SK, Biasi GP, Mackie RL, Madden TR (1991) Magnetotelluric evidence for crustal suture zones bounding the southern great Valley, California. J Geophys Res 90:353–376

    Google Scholar 

  • Park SK, Thompson SC, Rybin A, Batalev V, Bielinski R (2003) Structural constraints in neotectonic studies of thrust faults from the magnetotelluric method, Kochor Basin, Kyrgyz Republic. Tectonics 22, doi:10.1029/2001TC001318

  • Parker RL (1980) The inverse of electromagnetic induction: existence and construction of solutions based on incomplete data. J Geophys Res 85:4421–4428

    Google Scholar 

  • Parker RL (1994) Geophysical inverse theory. Princeton University Press, Princeton

    Google Scholar 

  • Parsons T, Blakely RJ, Brocher TM (2003) A simple algorithm for sequentially incorporating gravity observations in seismic traveltime tomography. In: Klemperer SL, Ernst WG (eds) The lithosphere of western North America and its geophysical characterization, vol 7. International Book Series, pp 404–417

  • Quist AS, Marshall WL (1968) Electrical conductivity of aqueous sodium chloride solutions from 0 to 800° and at pressures to 4000 bars. J Phys Chem 72:784–703

    Google Scholar 

  • Raab S, Hoth P, Huenges E, Müller HJ (1998) Role of sulfur and carbon in the electrical conductivity of the middle crust. J Geophys Res 103:9681–9689

    Google Scholar 

  • Rietbrock A, ANCORP Research Group (1999) Velocity structure and seismicity in the central Andes of northern Chile and southern Bolivia. Paper presented at the tectonophysics session of the American Geophysical Union, San Francisco, December 1999

  • Ritter O, Ryberg T, Weckmann U, Hofmann-Rothe A, Abueladas A, Garfunkel Z, DESERT Research Group (2003a) Geophysical images of the Dead Sea Transform in Jordan reveal an impermeable barrier for fluid flow. Geophys Res Lett 30, doi:10.1029/2003GL017541

  • Ritter O, Weckmann U, Vietor T, Haak V (2003b) A magnetotelluric study of the Damara Belt in Namiba: 1. Regional scale conductivity anomalies. Phys Earth Planet Int 138:71–90

    Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187

    Google Scholar 

  • Roecker S, Thurber C, McPhee D (2004) Joint inversion of gravity and arrival time data from Parkfield: new constraints on structure and hypocenter locations near the SAFOD drill site. Geophys Res Lett 31, doi:10.1029/2003GL019396

  • Ross JV, Bustin RM (1990) The role of strain energy in creep graphitization of anthracite. Nature 343:58–60

    Google Scholar 

  • Satpal O, Singh P, Sar D, Chatterjee SM, Sawai S (2006) Integrated interpretation for sub-basalt imaging in Saurashtra Basin, India. Leading Edge 25:882–885

    Google Scholar 

  • Scales JA, Smith ML, Treitel S (2001) Geophysical inverse theory. Samizdat Press, Golden

    Google Scholar 

  • Schalkoff R (1992) Pattern recognition: statistical, structural, and neural approaches. John Wiley and Sons, New York, 364 pp

    Google Scholar 

  • Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter 103:17–32

    Google Scholar 

  • Schmeling H (1986) Numerical models on the influence of partial melt on elastic, anelastic, and electrical properties of rocks. Part II: electrical conductivity. Phys Earth Planet Int 43:123–136

    Google Scholar 

  • Schwalenberg K, Rath V, Haak V (2002) Sensitivity studies applied to a 2-D resistivity model from the central Andes. Geophys J Int 150:673–686

    Google Scholar 

  • Shankland TJ, Ander MA (1983) Electrical conductivity, temperatures, and fluids in the lower crust. J Geophys Res 88:9475–9484

    Google Scholar 

  • Sibson RH (1994) Crustal stress, faulting and fluid flow. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins, vol 78. Geol Soc Spec Publ, London, pp 69–84

    Google Scholar 

  • Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge

    Google Scholar 

  • Solon KD (2000) Electromagnetic images of the Bangong-Nujiang suture zone of central Tibet: From INDEPTH magnetotelluric data. M.S. thesis, Syracuse University, Syracuse, New York, 81 pp

  • Solon KD, Jones AG, Nelson KD, Unsworth MJ, Kidd WF, Wei W, Tan H, Jin S, Deng M, Booker JR, Li S, Bedrosian P (2005) Structure of the crust in the vicinity of the Bangong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data. J Geophys Res 110, doi:10.1029/2003JB002405

  • Stesky RM, Breace WF (1973) Electrical conductivity of serpentinized rocks to 6 kilobars. J geophys Res 78:7614–7621

    Google Scholar 

  • Symons NP, Crosson RS (1997) Seismic velocity structure of the Puget Sound region from 3D nonlinear tomography. Geophys Res Lett 24:2593–2596

    Google Scholar 

  • Tauber S, Banks R, Ritter O, Weckmann U (2003) A high-resolution magnetotelluric survey of the Iapetus Suture Zone in southwest Scotland. Geophys J Int 153:548–568

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE, Keys DA (1976) Applied geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Thompson AB, Connelly JA (1990) Metamorphic fluids and anomalous porosities in the lower crust. Tectonophysics 182:47–55

    Google Scholar 

  • Tikhonov AN (1950) On the determination of the electric characteristics of deep layers of the Earth’s crust. Dokl Akad Nauk SSSR 73:295–297 [Reprinted in Vozoff, 1986]

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1979) Methods for solving ill-posed problems. Nauka, Moscow

    Google Scholar 

  • Torgersen T (1990) Crustal-scale fluid transport. Eos Trans AGU 71:1–13

    Google Scholar 

  • Tronicke J, Holliger K, Barrash W, Knoll MD (2004) Multivariate analysis of cross-hole georadar velocity and attentuation tomograms for aquifer zonation. Water Resour Res 40, doi:10.1029/2003WR002031

  • Tuncer V, Unsworth MJ, Sirapunvaraporn W, Craven JA (2006) Exploration for unconformity-type uranium deposits with audiomagnetotelluric data: a case study from the McArthur River mine, Saskatchewan, Canada. Geophysics 71:201–209

    Google Scholar 

  • Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kbar pressure: geophysical significance and implications for charge transport and melt structure. J Geophys Res 88:2413–2430

    Google Scholar 

  • Unsworth MJ, Malin PE, Egbert GD, Booker JR (1997) Internal structure of the San Andreas fault zone at Parkfield, California. Geology 25:359–362

    Google Scholar 

  • Unsworth M, Bedrosian P, Eisel M, Egbert G, Siripunvaraporn W (2000a) Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California. Geophys Res Lett 27:3021–2024

    Google Scholar 

  • Unsworth MJ, Lu X, Watts MD (2000b) CSAMT exploration at Sellafield: characterization of a potential radioactive waste disposal site. Geophysics 65:1070–1079

    Google Scholar 

  • Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn SG, Spratt JE, INDEPTH-MT Team (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438, doi:10.1038/nature04154

  • Vozoff K (ed) (1986) Magnetotelluric methods. Society of Exploration Geophysicists, Geophysical reprint series, No 5, Tulsa, Oklahoma, 763 pp

  • Vozoff K (1991) The magnetotelluric method. In: Naibighian M (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa, Oklahoma

    Google Scholar 

  • Waff HS, Weill DF (1975) Electrical conductivity of magmatic liquids: effects of temperature, oxygen fugacity, and composition. Earth Planet Sci Lett 28:254–260

    Google Scholar 

  • Waff HE, Rygh JT, Livelybrooks DW, Clingman WW (1988) Results of a magnetotelluric transect across western Oregon: crustal resistivity structure and the subduction of the Juan de Fuca plate. Earth Planet Sci Lett 87:313–324

    Google Scholar 

  • Walcott RI (1998) Models of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev Geophys 36:1–26

    Google Scholar 

  • Wannamker PE (1986) Electrical conductivity of water-undersaturated crustal melting. J Geophys Res 91:6321–6327

    Google Scholar 

  • Wannamaker PE (2000) Comment on “The petrologic case for a dry lower crust” by Bruce W. D. Yardley and John. W. Valley. J Geophys Res 105:6057–6064

  • Wannamaker PE, Doerner WM (2002) Crustal structure of the Ruby Mountains and southern Carlin Trend region, Nevada, from magnetotelluric data. Ore Geol Rev 21:185–210

    Google Scholar 

  • Wannamaker PE, Booker JR, Jones AG, Chave AD, Filloux JH, Waff HS, Law LK (1989) Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications. J Geophys Res 94:14127–14144

    Article  Google Scholar 

  • Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez VM, McKnight JD, Porter AD (2002) Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J Geophys Res 107, doi:10.1029/2001JB000186

  • Wei W, Unsworth M, Jones A, Tan H, Nelson D, Booker J, Chen L, Li S, Solon K, Bedrosian P, Jin S, Deng M, Ledo J, Kay D, Roberts B (2001) Widespread fluids in the Tibetan Crust. Science 292:716–718

    Google Scholar 

  • Willett SD, Beaumont C (1994) Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature 369:642–645

    Google Scholar 

  • Withers R, Eggers D, Fox T, Crebs T (1994) A case study of integrated hydrocarbon exploration through basalt. Geophysics 59:1666–1679

    Google Scholar 

  • Xiao W, Unsworth MJ (2006) Structural imaging in the Rocky Mountain foothills (Alberta) using magnetotelluric exploration. AAPG Bull 90:321–333

    Google Scholar 

  • Xu Y, Shankland TJ (1999) Electrical conductivity of orthopyroxene and its high pressure phases. Geophys Res Lett 26:2645–2648

    Google Scholar 

  • Xu Y, Poe BT, Shankland TJ, Rubie DC (1998) Electrical conductivity of olivine, wadsleyite and ringwoodite under upper-mantle conditions. Science 280:1415–1418

    Google Scholar 

  • Yardley BWD (1986) Is there water in the deep continental crust? Nature 323:111

    Google Scholar 

  • Yardley BWD, Valley JW (1997) The petrologic case for a dry lower crust. J Geophys Res 102:12173–12185

    Google Scholar 

  • Yardley BWD, Valley JW (2000) Reply. J Geophys Res 105:6065–6068

    Google Scholar 

  • Yuan X et al (2000) Subduction and collision processes in the central Andes constrained by converted seismic phases. Nature 408:958–961

    Google Scholar 

  • Zelt CA (1998) Lateral velocity resolution from three-dimensional seismic refraction data. Geophys J Int135:1101–112

    Google Scholar 

  • Zhao W, Mechie J, Brown LD, Guo J, Haines S, Hearn T, Klemperer SL, Ma YS, Meissner R, Nelson KD, Ni JF, Pananont P, Rapine R, Ross A, Saul J (2001) Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys J Int 145:486–498

    Google Scholar 

Download references

Acknowledgments

I wish to thank the organizing committee for the 18th EM Induction Workshop for the opportunity to prepare this review. I would like to also thank those within the EM community who have drawn my attention to a range of studies. Special thanks to Kavita Jeerage for helpful discussions of mechanisms of subsurface conductivity. This review has benefited greatly from reviews by Phil Wannamaker, Mike Friedel, Stephen Box, Seth Haines, and an anonymous reviewer. Guest editors John Weaver and Pilar Queralt are thanked for guiding this manuscript to publication in a timely fashion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bedrosian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedrosian, P.A. MT+, Integrating Magnetotellurics to Determine Earth Structure, Physical State, and Processes. Surv Geophys 28, 121–167 (2007). https://doi.org/10.1007/s10712-007-9019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-007-9019-6

Keywords

Navigation