Skip to main content
Log in

Azimuthal Seismic Amplitude Difference Inversion for Fracture Weakness

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Fracture weakness prediction is an important task in fractured reservoir analysis. We propose a new method to use seismic amplitude differences between azimuths to estimate the normal and tangential fracture weaknesses under the assumption that the anisotropic perturbation of the reflection coefficient is mainly induced by fractures. We first derive an expression of the reflection coefficient in terms of the normal and tangential fracture weaknesses for the case of an interface separating two fractured media. Then we use the linear fitting method to get the relationship between the two fracture weaknesses, and change the variables to precondition the inversion problem. The Bayesian framework, under the hypothesis of a Cauchy distribution prior information and a Gaussian distribution likelihood function, is employed to construct the objective function, and an initial low-frequency constraint is introduced to the objective function to make the inversion more stable. The conjugate gradient algorithm is adopted to solve the inverse problem. Tests on both synthetic and real data demonstrate that the normal and tangential fracture weaknesses can be estimated reasonably in the case of seismic data containing a moderate noise, and our inversion approach appears to be a stable method for predicting the fracture weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bachrach, R., Sengupta, M., Salama, A., et al. (2009). Reconstruction of the layer anisotropic elastic parameter and high resolution fracture characterization from P-wave data: a case study using seismic inversion and Bayesian rock physics parameter estimation. Geophysical Prospecting, 57, 253–262.

    Article  Google Scholar 

  • Bakulin, A., Grechka, V., & Tsvankin, I. (2000). Estimation of fracture parameters from reflection seismic data-Part I: HTI model due to a single fracture set. Geophysics, 65, 1788–1802.

    Article  Google Scholar 

  • Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics, 68, 185–198.

    Article  Google Scholar 

  • Chen, H. Z., Yin, X. Y., Qu, S. L., et al. (2014). AVAZ inversion for fracture weakness parameters based on the rock physics model. Journal of Geophysics and Engineering, 11, 065007.

    Article  Google Scholar 

  • Downton, J. (2005). Seismic parameter estimation from AVO inversion: Ph.D. Thesis, University of Calgary.

  • Downton, J., & Roure, B. (2010). Azimuthal simultaneous elastic inversion for fracture detection, 80th Annual International Meeting (pp. 263–267). Expanded Abstracts: SEG.

    Google Scholar 

  • Far, M. E., Hardage, B., & Wagner, D. (2014). Fracture parameter inversion for Marcellus Shale. Geophysics, 79, C55–C63.

    Article  Google Scholar 

  • Gray, D. (2004), Fracture detection using 3D azimuthal AVO, CSEG Recorder, 2004.

  • Gurevich, B. (2003). Elastic properties of saturated porous rocks with aligned fractures. Journal of Applied Geophysics, 54, 203–218.

    Article  Google Scholar 

  • Hampson, D., & Russell, B. (2005). Simultaneous inversion of pre-stack seismic data, CSEG National Convention, 1–4.

  • Hudson, J. A. (1980). Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88, 371–384.

    Article  Google Scholar 

  • Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 64, 133–150.

    Article  Google Scholar 

  • Mallick, S., Craft, K. L., Meister, L. J., et al. (1998). Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 63, 692–706.

    Article  Google Scholar 

  • Pšenčik, I., & Martins, J. L. (2001). Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Studia Geophysica et Geodaetica, 45, 176–199.

    Article  Google Scholar 

  • Pšenčik, I., & Vavryčuk, V. (1998). Weak contrast PP- wave displacement R/T coefficients in weakly anisotropic elastic media. Pure and Applied Geophysics, 151, 699–718.

    Article  Google Scholar 

  • Rüger, A. (1997). P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62, 713–722.

    Article  Google Scholar 

  • Rüger, A. (1998). Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 63, 935–947.

    Article  Google Scholar 

  • Sacchi, M. D., & Ulrych, T. J. (1995). High-resolution velocity gathers and offset space reconstruction. Geophysics, 60, 1169–1177.

    Article  Google Scholar 

  • Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. Journal of Acoustical Society of America, 68, 1516–1521.

    Article  Google Scholar 

  • Schoenberg, M., & Protazio, J. (1992). ‘Zoeppritz’ rationalized and generalized to anisotropy. Seismic Exploration, 1, 125–144.

    Google Scholar 

  • Schoenberg, M., & Sayers, C. M. (1995). Seismic anisotropy of fractured rock. Geophysics, 60, 204–211.

    Article  Google Scholar 

  • Shaw, R. K., & Sen, M. K. (2004). Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophysical Journal International, 158, 225–238.

    Article  Google Scholar 

  • Shaw, R. K., & Sen, M. K. (2006). Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics, 71, C15–C24.

    Article  Google Scholar 

  • Shewchuck, J. (1994). An introduction to the conjugate gradient method without the agonizing pain, School of Computer Science. Carnegie Mellon University. Pittsburg. (available at http://www-2.cs.cmu.edu/~jrs/jrspapers.html).

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation, Society for Industrial and Applied Mathematics Philadelphia.

  • Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51, 1954–1966.

    Article  Google Scholar 

  • Xu, S. Y. (2009). Integrated anisotropic rock physics model, US patent.

  • Zong, Z., Yin, X., & Wu, G. (2012). AVO inversion and poroelasticity with P- and S-wave moduli. Geophysics, 77, N29–N36.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the sponsorship of the National High-tech R&D Program of China (863 Program, 2013AA064201) for funding this research. We are grateful for the support from the SINOPEC Key Lab of Multi-Component Seismic Technology. We also thank the anonymous reviewers for their constructive suggestions. We are grateful for the help from David Henley and Kristopher Innanen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizhen Chen.

Appendix A: The Derivation of PP-Wave Reflection Coefficient

Appendix A: The Derivation of PP-Wave Reflection Coefficient

The relationships among m, n, i, j, k and l in Eq. (5) are given by Shaw and Sen (2006)

$$m = i\delta_{ij} + \left( {9 - i - j} \right)\left( {1 - \delta_{ij} } \right),$$
(26)
$$n = k\delta_{kl} + \left( {9 - k - l} \right)\left( {1 - \delta_{kl} } \right),$$
(27)

where \(\delta_{{\text{ij}}}\) and \(\delta_{{\text{kl}}}\) are Kronecker delta.

For the case of the P-wave incidence and P-wave reflection, the polarization and slowness vectors are given by

$$t = \left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta } \right],t^{{\prime }} = \left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,\cos \theta } \right],$$
(28)
$$p = \frac{1}{\alpha }\left[ {\sin \theta \cos \phi ,\sin \theta \sin \phi ,\cos \theta } \right],\quad p^{\prime } = \frac{1}{\alpha }\left[ { - \sin \theta \cos \phi , - \sin \theta \sin \phi ,\cos \theta } \right],$$
(29)

The expression of η is given by

$$\begin{aligned} \eta_{11} = \frac{{\sin^{4} \theta \cos^{4} \phi }}{{\alpha^{2} }},\;\eta_{12} = \frac{{\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha^{2} }},\;\eta_{13} = \frac{{\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }},\;\eta_{ 2 1} = \eta_{ 1 2} , \hfill \\ \eta_{22} = \frac{{\sin^{4} \theta \sin^{4} \phi }}{{\alpha^{2} }},\;\eta_{23} = \frac{{\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha^{2} }},\;\eta_{ 3 1} = \eta_{ 1 3} ,\eta_{ 3 2} = \eta_{ 2 3} , \hfill \\ \eta_{33} = \frac{{\cos^{4} \theta }}{{\alpha^{2} }},\;\eta_{44} = \frac{{ - 4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha^{2} }},\;\eta_{55} = \frac{{ - 4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }},\;\eta_{66} = \frac{{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha^{2} }}. \hfill \\ \end{aligned}$$
(30)

The calculation of the scattering function is given by

$$\begin{aligned} {\mathbf{S}}\left( {{\mathbf{r}}_{0} } \right) = \Delta \rho \cos 2\theta + \Delta C\eta \hfill \\ = \Delta \rho \cos 2\theta + \frac{{\sin^{4} \theta \cos^{4} \phi }}{{\alpha^{2} }}\left[ {\Delta \left( {\lambda { + }2\mu } \right) - \left( {\lambda { + }2\mu } \right)\delta_{{\Delta_{\text{N}} }} } \right] \hfill \\ + 2\left( {\frac{{\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi + \sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }}} \right)\left( {\Delta \lambda - \lambda \delta_{{\Delta_{\text{N}} }} } \right) \hfill \\ + \frac{{\sin^{4} \theta \sin^{4} \phi }}{{\alpha^{2} }}\left[ {\Delta \left( {\lambda { + }2\mu } \right) - \frac{{\lambda^{2} }}{{\lambda { + }2\mu }}\delta_{{\Delta_{\text{N}} }} } \right] + \frac{{\cos^{4} \theta }}{{\alpha^{2} }}\left[ {\Delta \left( {\lambda { + }2\mu } \right) - \frac{{\lambda^{2} }}{{\lambda { + }2\mu }}\delta_{{\Delta_{\text{N}} }} } \right] \hfill \\ + \frac{{2\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha^{2} }}\left( {\Delta \lambda - \frac{{\lambda^{2} }}{M}\delta_{{\Delta_{\text{N}} }} } \right) - \frac{{4\sin^{2} \theta \cos^{2} \theta \sin^{2} \phi }}{{\alpha^{2} }}\Delta \mu \hfill \\ - \frac{{4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi }}{{\alpha^{2} }}\left( {\Delta \mu - \mu \delta_{{\Delta_{\text{T}} }} } \right) + \frac{{4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi }}{{\alpha^{2} }}\left( {\Delta \mu - \mu \delta_{{\Delta_{\text{T}} }} } \right) \hfill \\ \end{aligned} .$$
(31)

Substituting Eq. (31) into Eq. (4) yields

$$\begin{aligned} R_{{\text{PP}}} = \frac{1}{{4\rho \cos^{2} \theta }}\left\{ \begin{aligned} \Delta \rho \cos 2\theta + \frac{1}{{\alpha^{2} }}\Delta \left( {\rho \alpha^{2} } \right) + \left( {\frac{{ - 8\sin^{2} \theta \cos^{2} \theta }}{{\alpha^{2} }}} \right)\Delta \left( {\rho \beta^{2} } \right) \hfill \\ - \rho \delta_{{\Delta_{\text{N}} }} \left[ {2\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right)g - 1} \right]^{2} \hfill \\ - \left( {4\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi - 4\sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \right)\rho g\delta_{{\Delta_{\text{T}} }} \hfill \\ \end{aligned} \right\} \hfill \\ \begin{array}{*{20}c} {} \\ \end{array} = \frac{1}{{4\rho \cos^{2} \theta }}\Delta \rho \cos 2\theta + \frac{1}{{4\rho \cos^{2} \theta }}\frac{1}{{\alpha^{2} }}\left( {\alpha^{2} \Delta \rho + 2\alpha \rho \Delta \alpha } \right) \hfill \\ \begin{array}{*{20}c} {} \\ \end{array} + \frac{1}{{4\rho \cos^{2} \theta }}\left( {\frac{{ - 8\sin^{2} \theta \cos^{2} \theta }}{{\alpha^{2} }}} \right)\left( {\beta^{2} \Delta \rho + 2\beta \rho \Delta \beta } \right) - \frac{1}{{4\cos^{2} \theta }}\delta_{{\Delta_{\text{N}} }} \left[ {2\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right)g - 1} \right]^{2} \hfill \\ - \frac{1}{{\cos^{2} \theta }}\left( {\sin^{4} \theta \sin^{2} \phi \cos^{2} \phi - \sin^{2} \theta \cos^{2} \theta \cos^{2} \phi } \right)g\delta_{{\Delta_{\text{T}} }} \hfill \\ \begin{array}{*{20}c} {} \\ \end{array} = \frac{1}{{2\cos^{2} \theta }}\frac{\Delta \alpha }{\alpha } - 4g\sin^{2} \theta \frac{\Delta \beta }{\beta } + \left( {\frac{1}{2} - 2g\sin^{2} \theta } \right)\frac{\Delta \rho }{\rho } \hfill \\ \begin{array}{*{20}c} {} \\ \end{array} - \frac{1}{{4\cos^{2} \theta }}\left[ {2\left( {\sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta } \right)g - 1} \right]^{2} \delta_{{\Delta_{\text{N}} }} \hfill \\ \begin{array}{*{20}c} {} \\ \end{array} - \left( {\sin^{2} \theta \tan^{2} \theta \sin^{2} \phi \cos^{2} \phi - \sin^{2} \theta \cos^{2} \phi } \right)g\delta_{{\Delta_{\text{T}} }} \hfill \\ \end{aligned} .$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, G., Ji, Y. et al. Azimuthal Seismic Amplitude Difference Inversion for Fracture Weakness. Pure Appl. Geophys. 174, 279–291 (2017). https://doi.org/10.1007/s00024-016-1377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1377-x

Keywords

Navigation