Skip to main content
Log in

From \(L^p\) bounds to Gromov–Hausdorff convergence of Riemannian manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we provide a way of taking \(L^p\), \(p > \frac{m}{2}\) bounds on a \(m-\) dimensional Riemannian metric and transforming that into Hölder bounds for the corresponding distance function. One can think of this new estimate as a type of Morrey inequality for Riemannian manifolds where one thinks of a Riemannian metric as the gradient of the corresponding distance function so that the \(L^p\), \(p > \frac{m}{2}\) bound analogously implies Hölder control on the distance function. This new estimate is then used to state a compactness theorem, another theorem which guarantees convergence to a particular Riemmanian manifold, and a new scalar torus stability result. We expect these results to be useful for proving geometric stability results in the presence of scalar curvature bounds when Gromov–Hausdorff convergence can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen, B., Bryden, E.: Sobolev bounds and convergence of Riemannian manifolds. Nonlinear Anal. 185, 142–169 (2019)

    Article  MathSciNet  Google Scholar 

  2. Anderson, M.T., Cheeger, J.: Diffeomorphism finiteness for manifolds with Ricci curvature and \(L^{n/2}\)-norm of curvature bounded. Geom. Funct. Anal. 1(3), 231–252 (1991)

    Article  MathSciNet  Google Scholar 

  3. Aldana, C.L., Carron, G., Tapie, S.: \(A_\infty \)-weights and compactness of conformal metrics under \(L^{n/2}\) curvature bounds. Anal. PDE 14(7), 2163–2205 (2021)

    Article  MathSciNet  Google Scholar 

  4. Andrews, B., Hopper, C.: The Ricci flow in Riemannian geometry, volume 2011 of Lecture Notes in Mathematics. Springer, Heidelberg (2011). A complete proof of the differentiable 1/4-pinching sphere theorem

  5. Allen, B., Hernandez, L., Parise, D., Payne, A., Wang, S.: Warped tori with almost non-negative scalar curvature. Geometriae Dedicata, 200(2), (2018)

  6. Allen, B.: Almost non-negative scalar curvature on Riemannian manifolds conformal to tori. J. Geom. Anal. 31, 11190–11213 (2021)

    Article  MathSciNet  Google Scholar 

  7. Anderson, M.T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102(2), 429–445 (1990)

    Article  MathSciNet  Google Scholar 

  8. Anderson, M.T.: Orbifold compactness for spaces of Riemannian metrics and applications. Math. Ann. 331(4), 739–778 (2005)

    Article  MathSciNet  Google Scholar 

  9. Allen, B., Perales, R., Sormani, C.: Volume above distance below. To appear in JDG (2020)

  10. Allen, B., Sormani, C.: Contrasting various notions of convergence in geometric analysis. Pac. J. Math. 303(1), 1–46 (2019)

    Article  MathSciNet  Google Scholar 

  11. Allen, B., Sormani, C.: Relating notions of convergence in geometric analysis. Nonlinear Anal. 200, (2020)

  12. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

  13. Berger, M.: An extension of Rauch’s metric comparison theorem and some applications. Ill. J. Math. 6, 700–712 (1962)

    MathSciNet  Google Scholar 

  14. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  Google Scholar 

  15. Colding, T.H.: Shape of manifolds with positive Ricci curvature. Invent. Math. 124(1–3), 175–191 (1996)

    Article  MathSciNet  Google Scholar 

  16. Colding, T.H.: Ricci curvature and volume convergence. Ann. Math. (2), 145(3):477–501, (1997)

  17. Gao, L.Z.: Convergence of Riemannian manifolds; Ricci and \(L^{n/2}\)-curvature pinching. J. Differ. Geom. 32(2), 349–381 (1990)

  18. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  Google Scholar 

  19. Gromov, M.: Structures métriques pour les variétés riemanniennes, volume 1 of Textes Mathématiques [Mathematical Texts]. CEDIC, Paris. Edited by J. Lafontaine and P, Pansu (1981)

  20. Gromov, M.: Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math. 12(8), 1109–1156 (2014)

    MathSciNet  Google Scholar 

  21. Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Annales scientifiques de l’École Normale Supérieure, Ser. 4 11(4), 451–470 (1978)

  22. Huang, L.-H., Lee, D.A., Sormani, C.: Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. J. Reine Angew. Math. 727, 269–299 (2017)

    Article  MathSciNet  Google Scholar 

  23. Iwaniec, T., Kauhanen, J., Kravetz, A., Scott, C.: The Hadamard–Scwarz inequality. J. Funct. Spaces Appl. 2(2), 191–215 (2004)

    Article  MathSciNet  Google Scholar 

  24. Petersen, P.: Convergence theorems in Riemannian geometry. In: Comparison geometry (Berkeley, CA, 1993–94), volume 30 of Math. Sci. Res. Inst. Publ., pp. 167–202. Cambridge Univ. Press, Cambridge (1997)

  25. Petersen, P., Wei, G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7(6), 1031–1045 (1997)

    Article  MathSciNet  Google Scholar 

  26. Petersen, P., Wei, G.: Analysis and geometry on manifolds with integral Ricci curvature bounds. II. Trans. Am. Math. Soc. 353(2), 457–478 (2001)

    Article  MathSciNet  Google Scholar 

  27. Sormani, C.: Intrinsic flat Arzela-Ascoli theorems. Commun. Anal. Geom. (2019)

  28. Sormani, C., Wenger, S.: The intrinsic flat distance between Riemannian manifolds and other integral current spaces. J. Differ. Geom. 87(1), 117–199 (2011)

    Article  MathSciNet  Google Scholar 

  29. Warner, F.W.: Extension of the Rauch comparison theorem to submanifolds. Trans. Am. Math. Soc. 122(2), 341–356 (1966)

    MathSciNet  Google Scholar 

  30. Yang, D.: Convergence of Riemannian manifolds with integral bounds on curvature. I. Ann. Sci. École Norm. Sup. (4) 25(1), 77–105 (1992)

  31. Yang, D.: Convergence of Riemannian manifolds with integral bounds on curvature. II. Ann. Sci. École Norm. Sup. (4) 25(2), 179–199 (1992)

  32. Yang, D.: Riemannian manifolds with small integral norm of curvature. Duke Math. J. 65(3), 501–510 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was funded in part by NSF DMS - 1612049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Allen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, B. From \(L^p\) bounds to Gromov–Hausdorff convergence of Riemannian manifolds. Geom Dedicata 218, 30 (2024). https://doi.org/10.1007/s10711-023-00875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-023-00875-y

Keywords

Mathematics Subject Classification

Navigation