Skip to main content
Log in

On convergence of intrinsic volumes of Riemannian manifolds

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Let \(\pi :M\rightarrow B\) be a Riemannian submersion of two compact smooth Riemannian manifolds, B is connected. Let \(M(\varepsilon )\) denote the manifold M equipped with the new Riemannian metric which is obtained from the original one by multiplying by \(\varepsilon \) along the vertical subspaces (i.e. along the fibers) and keeping unchanged along the (orthogonal to them) horizontal subspaces. Let \(V_i(M(\varepsilon ))\) denote the ith intrinsic volume. The main result of this note says that \(\lim _{\varepsilon \rightarrow +0}V_i(M(\varepsilon ))=\chi (Z) V_i(B)\) where \(\chi (Z)\) denotes the Euler characteristic of a fiber of \(\pi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker, S.: Theory of valuations on manifolds. I. Linear spaces. Isr. J. Math. 156, 311–339 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alesker, S.: Theory of valuations on manifolds. II. Adv. Math. 207(1), 420–454 (2006)

    Article  MathSciNet  Google Scholar 

  3. Alesker, S., Fu, J.H.G.: Theory of valuations on manifolds. III. Multiplicative structure in the general case. Trans. Am. Math. Soc. 360(4), 1951–1981 (2008)

    Article  MathSciNet  Google Scholar 

  4. Alesker, S.: Theory of Valuations on Manifolds. IV. New Properties of the Multiplicative Structure. Geometric Aspects of Functional Analysis, vol. 1910, pp. 1–44, Lecture Notes in Mathematics. Springer, Berlin (2007)

  5. Alesker, S.: Introduction to the Theory of Valuations. CBMS Regional Conference Series in Mathematics, vol. 126. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2018)

  6. Alesker, S.: Some conjectures on intrinsic volumes of Riemannian manifolds and Alexandrov spaces. Arnold Math. J. 4(1), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  7. Allendoerfer, C.B., Weil, A.: The Gauss–Bonnet theorem for Riemannian polyhedra. Trans. Am. Math. Soc. 53, 101–129 (1943)

    Article  MathSciNet  Google Scholar 

  8. Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math.(2) 173(2), 907–945 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal. 24(2), 403–492 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bernig, A., Faifman, D.: Valuation theory of indefinite orthogonal groups. J. Funct. Anal. 273(6), 2167–2247 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bernig, A., Faifman, D., Solanes, G.: Curvature Measures of Pseudo-Riemannian Manifolds. arXiv:1910.09635

  12. Bernig, A., Faifman, D., Solanes, G.: Uniqueness of curvature measures in pseudo-Riemannian geometry. arXiv:2009.02230

  13. Cheeger, J., Müller, W., Schrader, R.: On the curvature of piecewise flat spaces. Comm. Math. Phys. 92(3), 405–454 (1984)

    Article  MathSciNet  Google Scholar 

  14. Chern, S.: A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math. 45(2), 747–752 (1944)

    Article  MathSciNet  Google Scholar 

  15. Fu, J.H.G., Wannerer, T.: Riemannian curvature measures. Geom. Funct. Anal. 29(2), 343–381 (2019)

    Article  MathSciNet  Google Scholar 

  16. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin-Göttingen-Heidelberg (1957); (in German)

  17. Klain, D.A., Rota, G.-C..: Introduction to geometric probability. Lezioni Lincee. [Lincei Lectures] Cambridge University Press, Cambridge (1997)

  18. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, Vol. 2. The Classical Theory of Fields, 4th edn. Translated from the Russian by Morton Hamermesh. Pergamon Press, Oxford (1975)

  19. Lebedeva, N., Petrunin, A.: Curvature Tensors on Alexandrov Spaces. In preparation (2017)

  20. Petrinin, A.: Personal discussions.

  21. Schneider, R.: Convex Bodies: The Brunn–Minkowski heory, Second expanded edition. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

  22. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was done during my sabbatical stay at the Kent State University in the academic year 2018/19. I am grateful to this institution for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Alesker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by ISF Grant 865/16 and the US - Israel BSF Grant 2018115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alesker, S. On convergence of intrinsic volumes of Riemannian manifolds. J. Geom. 113, 23 (2022). https://doi.org/10.1007/s00022-022-00634-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-022-00634-6

Navigation