Skip to main content
Log in

Canonical translation surfaces for computing Veech groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For each stratum of the space of translation surfaces, we show that there is an infinite area translation surface which contains in an appropriate manner a copy of every translation surface of the stratum. Given a translation surface \((X, \omega )\) in the stratum, a matrix is in its Veech group \(\mathrm {SL}(X,\omega )\) if and only if an associated affine automorphism of the infinite surface sending each of a finite set, the “marked” Voronoi staples, arising from orientation-paired segments appropriately perpendicular to Voronoi 1-cells, to another pair of orientation-paired “marked” segments. We prove a result of independent interest. For each real \(a\ge \sqrt{2}\) there is an explicit hyperbolic ball such that for any Fuchsian group trivially stabilizing i, the Dirichlet domain centered at i of the group already agrees within the ball with the intersection of the hyperbolic half-planes determined by the group elements whose Frobenius norm is at most a. Together, these results give rise to a new algorithm for computing Veech groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Masur, H.: Ergodic theory of translation surfaces. Handb. Dyn. Syst. 1, 527–547 (2006). (Elsevier)

    Article  MathSciNet  Google Scholar 

  2. Kontsevich, M., Zorich, A.: Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. Math. 153, 631–678 (2003)

    Article  MathSciNet  Google Scholar 

  3. Veech, W.: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math. 97, 553–583 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bouw, I., Möller, M.: Teichmüller curves, triangle groups, and Lyapunov exponents. Ann. Math. 2(172), 139–185 (2010)

    Article  Google Scholar 

  5. Möller, M.: Affine groups of flat surfaces. Handbook of Teichmüller theory. Eur. Math. Soc. 2, 369–387 (2009)

    MATH  Google Scholar 

  6. Kenyon, R., Smillie, J.: Billiards in rational-angled triangles. Comment. Mathem. Helv. 75, 65–108 (2000)

    Article  Google Scholar 

  7. Puchta, J.-C.: On triangular billiards. Comment. Math. Helv. 76(3), 501–505 (2001)

    Article  MathSciNet  Google Scholar 

  8. Bowman, J.: Teichmüller geodesics, Delaunay triangulations, and Veech groups. Teichmüller theory and moduli problems. Ramanujan Math. Soc. Lect. Notes Series 10, 113–129 (2010)

    MATH  Google Scholar 

  9. Veech, W.: Bicuspid F-structures and Hecke groups. Proc. Lond. Math. Soc. 103(4), 710–745 (2011)

    Article  MathSciNet  Google Scholar 

  10. Broughton, S.A., Judge, C.: Ellipses in translation surfaces. Geom. Dedicata 157(1), 111–151 (2012)

    Article  MathSciNet  Google Scholar 

  11. Mukamel, R.: Fundamental domains and generators for lattice Veech groups. Comment. Math. Helv. 92, 57–83 (2017)

    Article  MathSciNet  Google Scholar 

  12. Smillie, J., Weiss, B.: Characterizations of lattice surfaces. Invent. Math. 180, 535–557 (2010)

    Article  MathSciNet  Google Scholar 

  13. Freedman, S.: Computing periodic points of Veech surfaces. https://github.com/sfreedman67/samsurf

  14. Schmithüsen, G.: An algorithm for finding the Veech group of an origami. Exp. Math. 13, 459–472 (2004)

    Article  MathSciNet  Google Scholar 

  15. Freidinger, M.: Stabilisatorgruppen in \(Aut(F_z)\) und Veechgruppen von Überlagerungen. Diplome Thesis, Universität Karlsruhe (2008)

  16. Sanderson, S.: Implementing Edwards’s algorithm for computing the Veech group of a translation surface. Oregon State University, Corvallis (2020)

    Google Scholar 

  17. Sanderson, S.: Constructing lattice surfaces with prescribed Veech groups: an algorithm. arXiv:2111.14512

  18. Edwards, B.: A new algorithm for computing the Veech group of a translation surface. Oregon State University, PhD Dissertation (2017)

  19. Delecroix, V., Hooper, W. P.: Flat surfaces in SageMath [Computer Software]. https://github.com/videlec/sage-flatsurf (2020). Accessed 19 May 2020

  20. The Sage Developers. SageMath, the sage mathematics software system (Version 8.7). https://www.sagemath.org (2019)

  21. Wright, A.: Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci. 2(1), 63–108 (2015)

    Article  MathSciNet  Google Scholar 

  22. Masur, H., Smillie, J.: Dimension of sets of nonergodic measured foliations. Ann. Math. Second Series 134(3), 455–543 (1991)

    Article  MathSciNet  Google Scholar 

  23. Strebel, K.: Quadratic differentials. Spring-Verlag, Berlin (1984)

    Book  Google Scholar 

  24. Katok, S.: Fuchsian groups. University of Chicago Press, Chicago (1992)

    MATH  Google Scholar 

  25. McMullen, C.: Teichmüller geodesics of infinite complexity. Acta Math. 191(2), 191–223 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Schmidt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, B., Sanderson, S. & Schmidt, T.A. Canonical translation surfaces for computing Veech groups. Geom Dedicata 216, 60 (2022). https://doi.org/10.1007/s10711-022-00723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10711-022-00723-5

Keywords

Mathematics Subject Classification

Navigation