Skip to main content

A Short Introduction to Translation Surfaces, Veech Surfaces, and Teichmüller Dynamics

  • Chapter
  • First Online:
Surveys in Geometry I

Abstract

We review the different notions of translation surfaces that are necessary to understand McMullen’s classification of \(\mathrm {GL}_2^+({\mathbb R})\)-orbit closures in genus two. We start by recalling the different definitions of a translation surface, in increasing order of abstraction, starting with cutting and pasting plane polygons, ending with Abelian differentials. We then define the moduli space of translation surfaces and explain its stratification by the type of zeroes of the Abelian differential, the local coordinates given by the relative periods, its relationship with the moduli space of complex structures and the Teichmüller geodesic flow. We introduce the \(\mathrm {GL}_2^+({\mathbb R})\)-action, and define the related notions of Veech group, Teichmüller disk, and Veech surface. We explain how McMullen classifies \(\mathrm {GL}_2^+({\mathbb R})\)-orbit closures in genus 2: we have orbit closures of dimension 1 (Veech surfaces, of which a complete list is given), 2 (Hilbert modular surfaces, of which again a complete list is given), and 3 (the whole moduli space of complex structures). In the last section, we review some recent progress in higher genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Arnoux, Le codage du flot géodésique sur la surface modulaire. Enseign. Math. (2) 40(1–2), 29–48 (1994)

    Google Scholar 

  2. I. Bouw, M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents. Ann. Math. 172, 139–185 (2010)

    MathSciNet  MATH  Google Scholar 

  3. K. Calta, Veech surfaces and complete periodicity in genus two. J. Am. Math. Soc. 17(4), 871–908 (2004)

    MathSciNet  MATH  Google Scholar 

  4. S. Cheboui, Intersection algébrique sur les surfaces à petits carreaux, Ph.D. Thesis, Université de Montpellier, 2021

    Google Scholar 

  5. S. Cheboui, A. Kessi, D. Massart, Algebraic intersection in a family of Teichmüller disks, preprint. https://arxiv.org/abs/2007.1084

  6. D. Davis, S. Lelièvre, Periodic paths on the pentagon, double pentagon and golden L. Preprint arXiv:1810.11310

    Google Scholar 

  7. D. Davis, D. Fuchs, S. Tabachnikov, Periodic trajectories in the regular pentagon. Moscow Math. J. 11(3), 1–23 (2011)

    MathSciNet  MATH  Google Scholar 

  8. V. Delecroix et al., Surface Dynamics - SageMath package, Version 0.4.1 (2019). https://doi.org/10.5281/zenodo.3237923

  9. A. Eskin, M. Mirzakhani, Invariant and stationary measures for the \(SL(2,{\mathbb R})\) action on moduli space. Publ. Math. Inst. Hautes Études Sci. 127, 95–324 (2018)

    Google Scholar 

  10. A. Eskin, S. Filip, A. Wright, The algebraic hull of the Kontsevich-Zorich cocycle. Ann. Math. (2) 188(1), 281–313 (2018)

    Google Scholar 

  11. A. Eskin, C. McMullen, R. Mukamel, A. Wright, Billiards, quadrilaterals and moduli spaces. J. Am. Math. Soc. 33(4), 1039–1086 (2020)

    MathSciNet  MATH  Google Scholar 

  12. H. Farkas, I. Kra, Riemann Surfaces, 2nd edn. Graduate Texts in Mathematics, vol. 71 (Springer, New York, 1992)

    Google Scholar 

  13. G. Forni, C. Matheus, Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. J. Mod. Dyn. 8(3–4), 271–436 (2014)

    MathSciNet  MATH  Google Scholar 

  14. E. Gutkin, C. Judge, Affine mappings of translation surfaces: geometry and arithmetic. Duke Math. J. 103(2), 191–213 (2000)

    MathSciNet  MATH  Google Scholar 

  15. J. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Teichmüller Theory, vol. 1 (Matrix Editions, Ithaca, NY, 2006)

    Google Scholar 

  16. P. Hubert, S. Lelièvre, Prime arithmetic Teichmüller discs in \(\mathcal {H}(2)\). Israel J. Math. 151, 281–321 (2006)

    Google Scholar 

  17. P. Hubert, T. Schmidt, Infinitely generated Veech groups. Duke Math. J. 123(1), 49–69 (2004)

    MathSciNet  MATH  Google Scholar 

  18. P. Hubert, T. Schmidt, An Introduction to Veech Surfaces, ed. by B. Hasselblatt, A. Katok. Handbook of Dynamical Systems, vol. 1B (Elsevier B. V., Amsterdam, 2006), pp. 501–526 (short version of the lecture notes from the summer school at Luminy, 2003, https://www.math.uchicago.edu/~masur/hs.pdf)

  19. S. Katok, Fuschian Groups (University of Chicago Press, Chicago, 1992)

    Google Scholar 

  20. S. Kerckhoff, H. Masur, J. Smillie, Ergodicity of billiard flows and quadratic differentials. Ann. Math. (2) 124(2), 293–311 (1986)

    Google Scholar 

  21. E. Lanneau, Promenade dynamique et combinatoire dans les espaces de Teichmüller, mémoire d’habilitation. https://www-fourier.ujf-grenoble.fr/~lanneau/articles/hdr-lanneau.pdf

  22. E. Lanneau, D. Massart, Algebraic intersection in regular polygons. https://arxiv.org/abs/2110.14235

  23. E. Lanneau, D. Nguyen, Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4. J. Topol. 7(2), 475–522 (2014)

    MathSciNet  MATH  Google Scholar 

  24. H. Masur, Interval exchange transformations and measured foliations. Ann. Math. (2) 115(1), 169–200 (1982)

    Google Scholar 

  25. H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential. Duke Math. J. 66(3), 387–442 (1992)

    MathSciNet  MATH  Google Scholar 

  26. H. Masur, S. Tabachnikov, Rational Billiards and Flat Structures, ed. by B. Hasselblatt, A. Katok. Handbook of Dynamical Systems, vol. 1A (North-Holland, Amsterdam, 2002), pp. 1015–1089

    Google Scholar 

  27. C. Matheus, A. Wright, Hodge-Teichmüller planes and finiteness results for Teichmüller curves. Duke Math. J. 164(6), 1041–1077 (2015)

    MathSciNet  MATH  Google Scholar 

  28. C. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces. J. Am. Math. Soc. 16(4), 857–885 (2003)

    MATH  Google Scholar 

  29. C. McMullen, Teichmüller curves in genus two: Discriminant and spin. Math. Ann. 333, 87–130 (2005)

    MathSciNet  MATH  Google Scholar 

  30. C. McMullen, Teichmüller curves in genus two: the decagon and beyond. J. Reine Angew. Math. 582, 173–199 (2005)

    MathSciNet  MATH  Google Scholar 

  31. C. McMullen, Teichmüller curves in genus two: torsion divisors and ratios of sines. Invent. Math. 165(3), 651–672 (2006)

    MathSciNet  MATH  Google Scholar 

  32. C. McMullen, Prym varieties and Teichmüller curves. Duke Math. J. 133(3), 569–590 (2006)

    MathSciNet  MATH  Google Scholar 

  33. C. McMullen, Dynamics of \(\mathrm {SL}_2({\mathbb R})\) over moduli space in genus two. Ann. Math. (2) 165(2), 397–456 (2007)

    Google Scholar 

  34. C. McMullen, R. Mukamel, A. Wright, Cubic curves and totally geodesic subvarieties of moduli space. Ann. Math. (2) 185(3), 957–990 (2017)

    Google Scholar 

  35. M. Möller, Affine Groups of Flat Surfaces, ed. by A. Papadopoulos, in Handbook of Teichmüller Theory, vol. II (European Mathematical Society (EMS), Zürich, 2009), pp. 369–387

    Google Scholar 

  36. T. Monteil, Introduction to the theorem of Kerckhoff, Masur and Smillie Oberwolfach Report, No. 17, 989–994 (2010). https://lipn.univ-paris13.fr/~monteil/papiers/fichiers/kms.pdf

    Google Scholar 

  37. D. Mumford, A remark on Mahler’s compactness theorem. Proc. Am. Math. Soc. 28(1), 289–294 (1971)

    MathSciNet  MATH  Google Scholar 

  38. B. Riemann, Theorie der Abel’schen Functionen. J. Reine Angew. Math. 54, 115–155 (1857)

    MathSciNet  Google Scholar 

  39. B. Riemann, Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge (Springer-Verlag/BSB B. G. Teubner Verlagsgesellschaft, Berlin/Leipzig, 1990)

    Google Scholar 

  40. H. Royden, Invariant Metrics on Teichmüller Space. Contributions to Analysis (a collection of papers dedicated to Lipman Bers) (Academic Press, New York, 1974), pp. 393–399

    Google Scholar 

  41. G. Schmithüsen, An algorithm for finding the Veech group of an origami. Exp. Math. 13(4), 459–472 (2004)

    MathSciNet  MATH  Google Scholar 

  42. G. Schmithüsen, Examples for Veech groups of origamis, in The Geometry of Riemann Surfaces and Abelian Varieties. Contemp. Math., vol. 397 (American Mathematical Society, Providence, RI, 2006), pp. 193–206

    Google Scholar 

  43. J. Smillie, C. Ulcigrai, Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps, in Dynamical Numbers-interplay Between Dynamical Systems and Number Theory. Contemp. Math., vol. 532 (American Mathematical Society, Providence, RI, 2010), pp. 29–65

    Google Scholar 

  44. J. Smillie, B. Weiss, Characterizations of lattice surfaces. Invent. Math. 180(3), 535–557 (2010)

    MathSciNet  MATH  Google Scholar 

  45. O. Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939(22), 197 pp. (1940)

    Google Scholar 

  46. O. Teichmüller, Extremal Quasiconformal Mappings and Quadratic Differentials. Translated from the German by Guillaume Théret. IRMA Lect. Math. Theor. Phys., vol. 26, ed. by A. Papadopoulos. Handbook of Teichmüller Theory, vol. V (European Mathematical Society, Zürich, 2016), pp. 321–483

    Google Scholar 

  47. W. Veech, Gauss measures for transformations on the space of interval exchange maps. Ann. Math. (2) 115(1), 201–242 (1982)

    Google Scholar 

  48. W. Veech, The Teichmüller geodesic flow. Ann. Math. (2) 124(3), 441–530 (1986)

    Google Scholar 

  49. W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math. 97(3), 553–583 (1989)

    MATH  Google Scholar 

  50. W. Veech, Moduli spaces of quadratic differentials. J. Analyse Math. 55, 117–171 (1990)

    MathSciNet  MATH  Google Scholar 

  51. C. Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle. Ergodic Theory Dynam. Syst. 18(4), 1019–1042 (1998)

    MathSciNet  MATH  Google Scholar 

  52. A. Wright, Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves. Geom. Funct. Anal. 23(2), 776–809 (2013)

    MathSciNet  MATH  Google Scholar 

  53. A. Wright, Translation surfaces and their orbit closures: an introduction for a broad audience. EMS Surv. Math. Sci. 2(1), 63–108 (2015)

    MathSciNet  MATH  Google Scholar 

  54. A. Zemljakov, A. Katok, Topological transitivity of billiards in polygons. Mat. Zametki 18(2), 291–300 (1975)

    MathSciNet  Google Scholar 

  55. A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry, vol. I (Springer, Berlin, 2006), pp. 437–583

    MATH  Google Scholar 

  56. A. Zorich, Le théorème de la baguette magique de A. Eskin et M. Mirzakhani. Gaz. Math. 142, 39–54 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Massart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massart, D. (2022). A Short Introduction to Translation Surfaces, Veech Surfaces, and Teichmüller Dynamics. In: Papadopoulos, A. (eds) Surveys in Geometry I. Springer, Cham. https://doi.org/10.1007/978-3-030-86695-2_9

Download citation

Publish with us

Policies and ethics