Skip to main content
Log in

A New Procedure for Calculation of Ground Response Curve of a Circular Tunnel Considering the Influence of Young’s Modulus Variation and the Plastic Weight Loading

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

In this paper, an analytical–numerical solution is presented for a circular tunnel in the hydrostatic condition using a generalized nonlinear Hoek–Brown failure criterion. To a deep insight into the problem, the influence of the plastic zone weight, and the Young's modulus on the ground response curve of a deep tunnel in a strain-softening media is highlighted. Experimental results show that the magnitude of the confined stress can have a direct effect on the critical softening parameter. Thus, a variable critical softening parameter is also assumed. That is, as the radial stress magnitude increases, the critical softening parameter is enhanced. The equations are derived for different directions (e.g. crown, floor, and sidewall) around the circular tunnel. The accuracy of the proposed method is validated by some examples. The results show that assuming a constant Young's modulus in the plastic zone imposes a significant error in the predicting of the tunnel convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ranjbarnia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Ground Response Curve Calculation

Appendix: Ground Response Curve Calculation

Input data:

\(\sigma_{ci}\) = uniaxial compression strength of the rock mass; GSI peak = geological strength index of the rock mass at the peak state; \(m_{i}\) = constant parameter of intact rock; \(r_{o}\) = external tunnel radius; \(\sigma_{0}\) = initial hydrostatic stress;\(\gamma\) = unit weight of rock mass; \(\theta\) = angle measured counter-clockwise from the spring line of the tunnel; \(D\) = degree of disturbance of the rock mass; \(v_{e}\) = Poisson's ratio of rock mass in the elastic zone; \(\alpha\) = curvature of the behavior model; \(n\) = number of rings in the plastic zone; \(P_{i}\) = internal support pressure; \(R_{P}\) = plastic radius.

Preliminary calculation:

  1. 1.

    \(F_{r} = \gamma sin\theta\)

  2. 2.

    \(GSI^{res} = 17.25e^{{0.0107 \times GSI^{peak} }} for 25 < GSI^{peak} < 75\)

  3. 3.

    \(s_{{\left( {peak} \right)}} = s_{{\left( {i = 1} \right)}} = e^{{\frac{{GSI^{peak} - 100}}{9 - 3D}}} ,s_{{\left( {res} \right)}} = e^{{\frac{{GSI^{res} - 100}}{9 - 3D}}}\)

  4. 4.

    \(m_{{b\left( {peak} \right)}} = m_{{b\left( {i = 1} \right)}} = m_{i} e^{{\frac{{GSI^{peak} - 100}}{28 - 14D}}} , m_{{b\left( {res} \right)}} = m_{i} e^{{\frac{{GSI^{res} - 100}}{28 - 14D}}}\)

  5. 5.

    \(a_{{\left( {peak} \right)}} = a_{{\left( {i = 1} \right)}} = 0.5 + \frac{1}{6}\left( {e^{{ - \frac{{GSI^{peak} }}{15}}} - e^{{ - \frac{20}{3}}} } \right), a_{{\left( {res} \right)}} = 0.5 + \frac{1}{6}\left( {e^{{ - \frac{{GSI^{res} }}{15}}} - e^{{ - \frac{20}{3}}} } \right)\)

  6. 6.

    \(E_{{e\left( {peak} \right)}} \left( {MPa} \right) = E_{{e\left( {i = 1} \right)}} = 100000\left( {\frac{{1 - \frac{D}{2}}}{{1 + e^{{\frac{{75 + 25D - GSI^{peak} }}{11}}} }}} \right)\)

  7. 7.

    \(E_{{e\left( {res} \right)}} \left( {MPa} \right) = 100000\left( {\frac{{1 - \frac{D}{2}}}{{1 + e^{{\frac{{75 + 25D - GSI^{res} }}{11}}} }}} \right)\)

  8. 8.

    \(\sigma_{cm}^{^{\prime}} = \sigma_{ci} .\frac{{\left( {m_{{b\left( {peak} \right)}} + 4s_{{\left( {peak} \right)}} - a_{{\left( {peak} \right)}} \left( {m_{{b\left( {peak} \right)}} - 8s_{{\left( {peak} \right)}} } \right)} \right)\left( {\frac{{m_{{b\left( {peak} \right)}} }}{4} + s_{{\left( {peak} \right)}} } \right)^{{a_{{\left( {peak} \right)}} - 1}} }}{{2\left( {1 + a_{{\left( {peak} \right)}} } \right)\left( {2 + a_{{\left( {peak} \right)}} } \right)}}\)

  9. 9.

    \(\sigma_{3n}^{^{\prime}} = \frac{{0.47\sigma_{cm}^{^{\prime}} \left( {\frac{{\sigma_{cm}^{^{\prime}} }}{{\sigma_{0} }}} \right)^{ - 0.94} }}{{\sigma_{ci} }}\)

  10. 10.

    \(\varphi_{{\left( {peak} \right)}} = sin^{ - 1} \left[ {\frac{{6a_{{\left( {peak} \right)}} m_{{b\left( {peak} \right)}} (s_{{\left( {peak} \right)}} + m_{{b\left( {peak} \right)}} \sigma_{3n}^{^{\prime}} )^{{a_{{\left( {peak} \right)}} - 1}} }}{{2\left( {1 + a_{{\left( {peak} \right)}} } \right)\left( {2 + a_{{\left( {peak} \right)}} } \right) + 6a_{{\left( {peak} \right)}} m_{{b\left( {peak} \right)}} (s_{{\left( {peak} \right)}} + m_{{b\left( {peak} \right)}} \sigma_{3n}^{^{\prime}} )^{{a_{{\left( {peak} \right)}} - 1}} }}} \right]\)

  11. 11.

    \(\psi_{{\left( {peak} \right)}} = \frac{{5 GSI^{peak} - 125}}{1000}\varphi_{{\left( {peak} \right)}} , for 25 < GSI^{peak} < 75\)

  12. 12.

    \(K_{{\Psi \left( {peak} \right)}} = K_{{\Psi \left( {i = 1} \right)}} = \frac{{1 + sin\Psi_{{\left( {peak} \right)}} }}{{1 - sin\Psi_{{\left( {peak} \right)}} }}\)

  13. 13.

    \(\sigma_{{r\left( {i = 1} \right)}} = \sigma_{{r\left( {R_{P} } \right)}}\)

  14. 14.

    \(\sigma_{{\theta \left( {i = 1} \right)}} = 2\sigma_{0} - \sigma_{{r\left( {R_{P} } \right)}}\)

  15. 15.

    \(\varepsilon_{{\theta \left( {i = 1} \right)}}^{ } = \varepsilon_{\theta \left( r \right)}^{e} = \frac{{1 + v_{e} }}{{E_{e} }}\left( {\sigma_{0} - \sigma_{{r\left( {i = 1} \right)}} } \right) , \varepsilon_{{\theta \left( {i = 1} \right)}}^{P} = 0\)

  16. 16.

    \(\varepsilon_{{r\left( {i = 1} \right)}}^{ } = \varepsilon_{{r\left( {i = 1} \right)}}^{e} = - \frac{{1 + v_{e} }}{{E_{e} }}\left( {\sigma_{0} - \sigma_{{r\left( {i = 1} \right)}} } \right) , \varepsilon_{{r\left( {i = 1} \right)}}^{P} = 0\)

  17. 17.

    \(\eta_{{\left( {i = 1} \right)}}^{P} = 0\)

  18. 18.

    \(\rho_{{\left( {i = 1} \right)}} = 1\)

  19. 19.

    \(M_{{\left( {i = 1} \right)}} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - E_{e} \left[ {0.0046e^{{0.0768 \times GSI^{peak} }} } \right]\left( {\frac{{\sigma_{{r\left( {i = 1} \right)}}^{ } }}{{\sigma_{ci} \sqrt {s^{peak} } }}} \right)^{ - 1} } & {if \frac{{\sigma_{{r\left( {i = 1} \right)}}^{ } }}{{\sigma_{ci} \sqrt {s^{peak} } }} \ge 0.1} \\ { - E_{e} \left[ {0.0046e^{{0.0768 \times GSI^{peak} }} } \right]\left( {\frac{{\sigma_{{r\left( {i = 1} \right)}}^{ } }}{{2\sigma_{ci} \sqrt {s^{peak} } }} + 0.05} \right)^{ - 1} } & {if \frac{{\sigma_{{r\left( {i = 1} \right)}}^{ } }}{{\sigma_{ci} \sqrt {s^{peak} } }} \le 0.1} \\ \end{array} } \\ \\ \end{array} } \right.\)

  20. 20.

    \(\eta_{{\left( {i = 1} \right)}}^{P*} = \left( {1 + \frac{{K_{{\Psi \left( {\eta_{{\left( {i = 1} \right)}}^{P} } \right)}} }}{2}} \right)\left[ {\sigma_{1}^{peak} \left( {\sigma_{{r\left( {i = 1} \right)}}^{ } } \right) - \sigma_{1}^{res} \left( {\sigma_{{r\left( {i = 1} \right)}}^{ } } \right)} \right]\left[ {\frac{1}{{E_{e} }} - \frac{1}{{M_{{\left( {i = 1} \right)}} }}} \right]\)

  21. 21.

    \(\Delta \sigma_{{r\left( {i = 1} \right)}} = \Delta \sigma_{{\theta \left( {i = 1} \right)}} = \Delta \varepsilon_{{r\left( {i = 1} \right)}}^{e} = \Delta \varepsilon_{{\theta \left( {i = 1} \right)}}^{e} = \Delta \rho_{{\left( {i = 1} \right)}} = \overline{\rho }_{{\left( {i = 1} \right)}} = \Delta \varepsilon_{{\theta \left( {i = 1} \right)}}^{P} = \Delta \varepsilon_{{r\left( {i = 1} \right)}}^{P} = \Delta \varepsilon_{{\theta \left( {i = 1} \right)}} = \Delta \varepsilon_{{r\left( {i = 1} \right)}} = 0\)

Sequence of calculation for each ring (\(i \ge 2\)):

  1. 1.

    \(\Delta \sigma_{r\left( i \right)} = \frac{{P_{i} - \sigma_{{r\left( {R_{P} } \right)}} }}{n}\)

  2. 2.

    \(\sigma_{r\left( i \right)} = \sigma_{{r\left( {i - 1} \right)}} + \Delta \sigma_{r\left( i \right)}\)

  3. 3.

    \(\sigma_{\theta \left( i \right)} = \sigma_{r\left( i \right)} + \sigma_{ci} \left( {\frac{{m_{{b\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} \sigma_{r\left( i \right)} }}{{\sigma_{ci} }} + s_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} } \right)^{{a_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}\)

  4. 4.

    \(\Delta \sigma_{\theta \left( i \right)} = \sigma_{\theta \left( i \right)} - \sigma_{{\theta \left( {i - 1} \right)}}\)

  5. 5.

    \(\Delta \varepsilon_{r\left( i \right)}^{e} = \frac{{1 + v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}{{E_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}\left[ {\Delta \sigma_{r\left( i \right)} \left( {1 - v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} } \right) - \Delta \sigma_{\theta \left( i \right)} v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} } \right]\)

  6. 6.

    \(\Delta \varepsilon_{\theta \left( i \right)}^{e} = \frac{{1 + v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}{{E_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}\left[ {\Delta \sigma_{\theta \left( i \right)} \left( {1 - v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} } \right) - \Delta \sigma_{r\left( i \right)} v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} } \right]\)

  7. 7.

    \(H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right) = \sigma_{ci} \left( {\frac{{m_{{b_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }} \left[ {\frac{{\sigma_{r\left( i \right)} + \sigma_{{r\left( {i - 1} \right)}} }}{2}} \right]}}{{\sigma_{ci} }} + s_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} } \right)^{{a_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}\)

  8. 8.

    \(C_{4} = \sqrt {\left[ {\Delta \sigma_{r\left( i \right)} - 2F_{r} R_{P} \rho_{i - 1} + 2H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right)} \right]^{2} - 8\Delta \sigma_{r\left( i \right)} H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right)}\)

  9. 9.

    \(\rho_{i} = \left\{ {\begin{array}{*{20}c} {\frac{{ - \Delta \sigma_{r\left( i \right)} + 2H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right) - C_{4} }}{{2F_{r} R_{P} }}} & {if F_{r} \ne 0} \\ {\rho_{i - 1} \left[ {\frac{{\Delta \sigma_{r\left( i \right)} + 2H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right)}}{{ - \Delta \sigma_{r\left( i \right)} + 2H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right)}}} \right]} & {if F_{r} = 0} \\ \end{array} } \right.\)

  10. 10.

    \(\Delta \rho_{\left( i \right)} = \rho_{\left( i \right)} - \rho_{{\left( {i - 1} \right)}}\)

  11. 11.

    \(\overline{\rho }_{\left( i \right)} = \frac{{\rho_{\left( i \right)} + \rho_{{\left( {i - 1} \right)}} }}{2}\)

  12. 12.

    \(\Delta \varepsilon_{\theta \left( i \right)}^{P} = \frac{{ - \frac{{\Delta \varepsilon_{\theta \left( i \right)}^{e} }}{{\Delta \rho_{\left( i \right)} }} - \frac{{1 + v_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}{{E_{{\left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }} \frac{{H\left( {\overline{\sigma }_{r\left( i \right)} ,\eta_{{\left( {i - 1} \right)}}^{P} } \right)}}{{\overline{\rho }_{\left( i \right)} }} - \frac{{\varepsilon_{{\theta \left( {i - 1} \right)}}^{P} - \varepsilon_{{r\left( {i - 1} \right)}}^{P} }}{{\overline{\rho }_{\left( i \right)} }}}}{{\frac{1}{{\Delta \rho_{\left( i \right)} }} + \frac{{1 + K_{{\Psi (\eta_{{\left( {i - 1} \right)}}^{P} )}} }}{{\overline{\rho }_{\left( i \right)} }}}}\)

  13. 13.

    \(\Delta \varepsilon_{r\left( i \right)}^{P} = - K_{{\Psi (\eta_{{\left( {i - 1} \right)}}^{P} )}} \Delta \varepsilon_{\theta \left( i \right)}^{P}\)

  14. 14.

    \(\varepsilon_{\theta \left( i \right)}^{P} = \Delta \varepsilon_{\theta \left( i \right)}^{P} + \varepsilon_{{\theta \left( {i - 1} \right)}}^{P}\)

  15. 15.

    \(\varepsilon_{r\left( i \right)}^{P} = \Delta \varepsilon_{r\left( i \right)}^{P} + \varepsilon_{{r\left( {i - 1} \right)}}^{P}\)

  16. 16.

    \(\eta_{\left( i \right)}^{P} = \eta_{{\left( {i - 1} \right)}}^{P} + \Delta \varepsilon_{\theta \left( i \right)}^{P} - \Delta \varepsilon_{r\left( i \right)}^{P}\)

  17. 17.

    \(\Delta \varepsilon_{\theta \left( i \right)} = \Delta \varepsilon_{\theta \left( i \right)}^{e} + \Delta \varepsilon_{\theta \left( i \right)}^{P}\)

  18. 18.

    \(\Delta \varepsilon_{r\left( i \right)} = \Delta \varepsilon_{r\left( i \right)}^{e} + \Delta \varepsilon_{r\left( i \right)}^{P}\)

  19. 19.

    \(\varepsilon_{r\left( i \right)} = \varepsilon_{{r\left( {i - 1} \right)}} + \Delta \varepsilon_{r\left( i \right)}\)

  20. 20.

    \(\varepsilon_{\theta \left( i \right)} = \varepsilon_{{\theta \left( {i - 1} \right)}} + \Delta \varepsilon_{\theta \left( i \right)}\)

  21. 21.

    \(M_{\left( i \right)} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - E_{e} \left[ {0.0046e^{{0.0768 \times GSI^{peak} }} } \right]\left( {\frac{{\sigma_{r\left( i \right)}^{ } }}{{\sigma_{ci} \sqrt {s^{peak} } }}} \right)^{ - 1} } & {if\; \frac{{\sigma_{r\left( i \right)}^{ } }}{{\sigma_{ci} \sqrt {s^{peak} } }} \ge 0.1} \\ { - E_{e} \left[ {0.0046e^{{0.0768 \times GSI^{peak} }} } \right]\left( {\frac{{\sigma_{r\left( i \right)}^{ } }}{{2\sigma_{ci} \sqrt {s^{peak} } }} + 0.05} \right)^{ - 1} } & {if\; \frac{{\sigma_{r\left( i \right)}^{ } }}{{\sigma_{ci} \sqrt {s^{peak} } }} \le 0.1} \\ \end{array} } \\ \\ \end{array} } \right.\)

  22. 22.

    \(\eta_{\left( i \right)}^{P*} = \left( {1 + \frac{{K_{{\Psi \left( {\eta_{{\left( {i - 1} \right)}}^{P} } \right)}} }}{2}} \right)\left[ {\sigma_{1}^{peak} \left( {\sigma_{r\left( i \right)}^{ } } \right) - \sigma_{1}^{res} \left( {\sigma_{r\left( i \right)}^{ } } \right)} \right]\left[ {\frac{1}{{E_{e} }} - \frac{1}{{M_{\left( i \right)} }}} \right]\)

  23. 23.

    \(K_{{\Psi (\eta_{\left( i \right)}^{P} )}} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {1 + \left( {K_{{\psi \left( {peak} \right)}} - 1} \right) \times e^{{\frac{{ - \eta_{\left( i \right)}^{P} }}{{\eta_{\left( i \right)}^{P*} }}}} } & {if\; 0 < \eta_{\left( i \right)}^{P} \le \eta_{\left( i \right)}^{P*} } \\ {1 + \left( {K_{{\psi \left( {peak} \right)}} - 1} \right) \times e^{ - 1} } & {if\; \eta_{\left( i \right)}^{P} > \eta_{\left( i \right)}^{P*} } \\ \end{array} } \\ \\ \end{array} } \right.\)

  24. 24.

    \(\omega_{{\left( {\eta_{\left( i \right)}^{P} } \right)}} = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {\omega_{P} - \omega_{r} } \right)\left[ {\alpha \left( {\frac{{\eta_{\left( i \right)}^{P} }}{{\eta_{\left( i \right)}^{P*} }}} \right)^{2} - \left( {1 + \alpha } \right)\frac{{\eta_{\left( i \right)}^{P} }}{{\eta_{\left( i \right)}^{P*} }}} \right] + \omega_{P} } & {if 0 < \eta_{\left( i \right)}^{P} \le \eta_{\left( i \right)}^{P*} } \\ {\omega_{r} } & {if \eta_{\left( i \right)}^{P} > \eta_{\left( i \right)}^{P*} } \\ \end{array} } \\ \\ \end{array} } \right.\)

  25. 25.

    If \(\sigma_{r\left( i \right)} > P_{i}\), let i = i + 1 and repeat the above calculations for next ring

  26. 26.

    If \(\sigma_{r\left( i \right)} = P_{i}\), consider the below note. Then, perform below steps

  27. 27.

    \(R_{P} = \frac{{r_{o} }}{{\rho_{i} }}\)

  28. 28.

    \(u_{r\left( i \right)} = r_{o} \varepsilon_{\theta \left( i \right)}\)

Note: It should be noted that when \(F_{r}\) is not zero, the calculations depend on \(R_{P}\) value. Due to the fact that this parameter is not initially determined, the calculation must be performed alternately to achieve an appropriate convergence. Thus, at the first step, an initial value for \(R_{P}\) is assumed and calculations are performed. After the calculations, a new \(R_{P}\) will be obtained and this value is used for calculations of subsequent stages. When the difference between the new value of this parameter and the last one becomes negligible, the computations will be stopped. An important point is that when the internal support pressure becomes smaller than some value, the magnitude of \(R_{P}\) does not converge. This means that instability of the tunnel occurs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheri, M., Ranjbarnia, M. A New Procedure for Calculation of Ground Response Curve of a Circular Tunnel Considering the Influence of Young’s Modulus Variation and the Plastic Weight Loading. Geotech Geol Eng 39, 1079–1099 (2021). https://doi.org/10.1007/s10706-020-01546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-020-01546-5

Keywords

Navigation