Skip to main content
Log in

Statistical aspects in crack growth phenomena: how the fluctuations reveal the failure mechanisms

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Material failure often gives rise to strong fluctuations that reflect on the rough trajectory followed by cracks and on their intermittent dynamics. Deciphering these fluctuations is a major challenge as they reveal how cracks interact with the material microstructure. Here, we illustrate through recent studies how the statistical properties of these fluctuations shed light on the elementary failure mechanisms taking place at the microstructure scale. The implications of these findings in terms of material characterization and failure analysis are discussed and some promising directions for future investigations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The principal value PV \(\int \) in Eq. (2) ensures the convergence of the integral.

  2. The constant \(\varOmega _\epsilon \) involved in Eq. (9) is chosen such that the average of \(\omega (\mathbf {x})\) over all \(\mathbf {x}\) is zero.

  3. The actual decomposition of the height variation computed as a scale \(\delta r\) into the sum of height variations computed at a finer scale \(\epsilon = \delta r/n\) where n is an integer writes as \(\delta h(\mathbf {x},\delta \mathbf {x}) = h(\mathbf {x} + \delta \mathbf {x}) - h(\mathbf {x}) = \sum \nolimits _{k=1}^{n} h(\mathbf {x} + \frac{k}{n} \delta \mathbf {x}) - h\left( \mathbf {x} + \frac{k-1}{n} \delta \mathbf {x}\right) = \sum \nolimits _{k=1}^{n} \delta h\left( \mathbf {x} + \frac{k-1}{n} \delta \mathbf {x}, \frac{\delta \mathbf {x}}{n}\right) \).

  4. Note however that the idea of Mandelbrot et al. (1984) was to establish a correlation of the material toughness with the roughness exponent, and not with a crossover length scale between two self-affine regimes as suggested by these recent studies.

References

  • Alava MJ, Nukala PK, Zapperi S (2006) Statistical models of fracture. Adv. Phys. 55:349–476

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7:55–129

    Article  Google Scholar 

  • Barés J, Barbier L, Bonamy D (2013) Crackling versus continuumlike dynamics in brittle failure. Phys. Rev. Lett. 111:054301

    Article  Google Scholar 

  • Barés J, Hattali ML, Dalmas D, Bonamy D (2014) Fluctuations of global energy release and crackling in nominally brittle heterogeneous fracture. Phys. Rev. Lett. 113:264301

    Article  Google Scholar 

  • Ben-Dayan I, Bouchbinder E, Procaccia I (2006) Random and correlated roughening in slow fracture by damage nucleation. Phys. Rev. E 74:146102

    Article  Google Scholar 

  • Bitzek E, Kermode JR, Gumbsch P (2015) Atomistic aspects of fracture. Int. J. Fract. 191:13–30

    Article  Google Scholar 

  • Boffa JM, Allain C, Hulin JP (1998) Experimental analysis of fracture rugosity in granular and compact rocks. Eur. Phys. J. Appl. Phys. 2:281–289

    Article  Google Scholar 

  • Bonamy D, Bouchaud E (2011) Failure of heterogeneous materials: A dynamic phase transition? Phys. Rep. 498:1–44

    Article  Google Scholar 

  • Bonamy D, Ponson L, Prades S, Bouchaud E, Guillot C (2006a) Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. Phys. Rev. Lett. 97:135504

    Article  Google Scholar 

  • Bonamy D, Prades S, Rountree CL, Ponson L, Dalmas D, Bouchaud E, Ravi-Chandar K, Guillot C (2006b) Nanoscale damage during fracture in silica glass. Int. J. Fract. 140:3–13

    Article  Google Scholar 

  • Bonamy D, Santucci S, Ponson L (2008) Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition. Phys. Rev. Lett. 101:045501

    Article  Google Scholar 

  • Bouchaud E, Lapasset G, Planès J (1990) Fractal dimension of fractured surfaces: A universal value? Europhys. Lett. 13:73–79

    Article  Google Scholar 

  • Bouchaud E, Ponson L (2017) Fracture mechanics of heterogeneous materials. Wiley, Hoboken (in preparation)

  • Bouchaud JP, Bouchaud E, Lapasset G, Planès J (1993) Models of fractal cracks. Phys. Rev. Lett. 71:2240–2243

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48:797–826

    Article  Google Scholar 

  • Chopin J, Prevost A, Boudaoud A, Adda-Bedia M (2011) Crack front dynamics across a single heterogeneity. Phys. Rev. Lett. 107:144301

    Article  Google Scholar 

  • Chopin J, Boudaoud A, Adda-Bedia M (2015) Morhology and dynamics of a crack front propagating in a model disordered material. J. Mech. Phys. Solids 74:38–48

    Article  Google Scholar 

  • Chopin J, Bouchaud E, Le Doussal P, Ponson L (2016) Intermittent crack dynamics through disordered interfaces with controlled fracture properties (in preparation)

  • Ciccotti M, Creton C (2016) Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79:046601

    Article  Google Scholar 

  • Clotet X, Ortin J, Santucci S (2014) Disorder-induced capillary bursts control intermittency in slow imbibition. Phys. Rev. Lett. 113:074501

    Article  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int. J. Fract. 16:155–169

    Article  Google Scholar 

  • Dalmas D, Barthel E, Vandembroucq D (2009) Crack front pinning by design in planar heterogeneous interfaces. J. Mech. Phys. Solids 57:446–457

    Article  Google Scholar 

  • Dalmas D, Lelarge A, Vandembroucq D (2008) Crack propagation through phase-separated glasses: effect of the characteristic size of disorder. Phys. Rev. Lett. 101:255501

    Article  Google Scholar 

  • Dimas LS, Bratzel GH, Eylon I, Buehler M (2013) Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv. Funct. Mat. 23:4629–4638

    Article  Google Scholar 

  • Gao H, Rice JR (1989) A first-order perturbation analysis of crack trapping by arrays of obstacles. J. Appl. Mech. 56:828–linebreak836

    Article  Google Scholar 

  • Gjerden KG, Stormo A, Hansen A (2014) Universality classes in constrained crack growth. Phys. Rev. Lett. 111:135502

    Article  Google Scholar 

  • Gjerden KG, Stormo A, Hansen A (2014) Local dynamics of a randomly pinned crack front: a numerical study. Front. Phys. 2:66

    Article  Google Scholar 

  • Goehring L, Mahadevan L, Morris SW (2009) Nonequilibrium scale selection mechanism for columnar jointing. Proc. Nat. Acad. Sci. 106:387–392

    Article  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int. J. Fract. 10:507–523

    Article  Google Scholar 

  • Guerra C, Scheibert J, Bonamy D, Dalmas D (2012) Understanding fast macroscale fracture from microcrack post mortem patterns. Proc. Nat. Acad. Sci. 109:390–394

    Article  Google Scholar 

  • Han K, Ciccotti M, Roux S (2010) Measuring nanoscale stress intensity factors with an atomic force microscope. EPL 89:66003

    Article  Google Scholar 

  • Hansen A, Schmittbuhl J (2003) Origin of the universal roughness exponent of brittle fracture surfaces: stress weighted percolation in the damage zone. Phys. Rev. Lett. 90:045504

    Article  Google Scholar 

  • Herrmann H, Roux S (1990) Statistical Models for the Fracture of Disordered Media. Elsevier, Amsterdam

    Google Scholar 

  • Hild F, Bouterf A, Roux S (2015) Damage measurement via DIC. Int. J. Fract. 191:77–105

    Article  Google Scholar 

  • Hossain MZ, Hsueh CJ, Bourdin B, Bhattacharya K (2014) Effective toughness of heterogeneous media. J. Mech. Phys. Solids 71:15–32

    Article  Google Scholar 

  • Irwin GR (1958) Fracture. In: Flügge S (ed) Handbuch der physik, vol. 6., Springer, Berlin

  • Kachanov M (2003) On the problem of crack interactions and crack coalescence. Int. J. Fract. 120:537–543

    Article  Google Scholar 

  • Katzav E, Adda-Bedia M, Derrida B (2007) Fracture surfaces of heterogeneous materials: a 2D solvable model. Eur. Phys. Lett. 78:46006

    Article  Google Scholar 

  • Kun F, Varga I, Lennartz-Sassinek S, Main IG (2014) Rupture cascades in a discrete element model of a porous sedimentary rock. Phys. Rev. Lett. 112:165501

    Article  Google Scholar 

  • Larralde H, Ball RC (1995) The shape of slowly growing cracks. Europhys. Lett. 30:87–92

    Article  Google Scholar 

  • Laurson L, Santucci S, Zapperi S (2010) Avalanches and clusters in planar crack front propagation. Phys. Rev. E 81:046116

    Article  Google Scholar 

  • Lazarus V (2011) Perturbation approaches of a planar crack in linear elastic fracture mechanics: a review. J. Mech. Phys. Solids 59:121–144

    Article  Google Scholar 

  • Legrand L, Patinet S, Leblond JB, Frelat J, Lazarus V, Vandembroucq D (2011) Coplanar perturbation of a crack lying in the mid-plane of a plate. Int. J. Fract. 170:67–82

    Article  Google Scholar 

  • Limodin N, Réthoré J, Buffière J, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of lobaratory X-ray microtomography images. Acta Mater. 57:4090–4101

    Article  Google Scholar 

  • Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int. Mat. Rev. 59(1):1–43

    Article  Google Scholar 

  • Måløy KJ, Hansen A, Hinrichsen EL, Roux S (1992) Experimental measurements of the roughness of brittle cracks. Phys. Rev. Lett. 68:213–215

    Article  Google Scholar 

  • Måløy KJ, Santucci S, Schmittbuhl J, Toussaint R (2006) Local waiting time fluctuations along a randomly pinned crack front. Phys. Rev. Lett. 96:045501

    Article  Google Scholar 

  • Måløy KJ, Schmittbuhl J (2001) Dynamical event during slow crack propagation. Phys. Rev. Lett. 87:105502

    Article  Google Scholar 

  • Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722

    Article  Google Scholar 

  • Marthelot J, Roman B, Bico J, Teisseire J, Dalmas D, Melo F (2014) Self-replicating cracks: a collaborative fracture mode in thin films. Phys. Rev. lett. 113:085502

    Article  Google Scholar 

  • Morel S, Bonamy D, Ponson L, Bouchaud E (2008) Transient damage spreading and anomalous scaling in mortar crack surfaces. Phys. Rev. E 78:016112

    Article  Google Scholar 

  • Movchan AB, Gao H, Willis JR (1998) On perturbations of plane cracks. Int. J. Solids Struct. 35:3419–3453

    Article  Google Scholar 

  • Needleman A, Tvergaard V, Bouchaud E (2012) Prediction of ductile fracture surface roughness scaling. J. Appl. Mech. 79:031015

    Article  Google Scholar 

  • Nukala PKVV, Barai P, Zapperi S, Alava M, Simunovic S (2010) Fracture roughness in three-dimensional beam lattice systems. Phys. Rev. E 82:026103

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J. Eng. Mech. 113:1512–1533

    Article  Google Scholar 

  • Pindra N, Lazarus V, Leblond JB (2008) The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties. J. Mech. Phys. Solids 56:1269–1295

    Article  Google Scholar 

  • Ponson L, Pindra N (2016) Crack propagation through disordered materials as a depinning transition: a critical test of the theory. Phys. Rev. E (in press)

  • Ponson L, Auradou H, Vié P, Hulin JP (2006a) Low self-affine exponents of fractured glass ceramics surfaces. Phys. Rev. Lett. 97:125501

    Article  Google Scholar 

  • Ponson L, Bonamy D, Auradou H, Mourot G, Morel S, Bouchaud E, Guillot C, Hulin J (2006b) Anisotropic self-affine properties of experimental fracture surfaces. Int. J. Fract. 140:27–36

    Article  Google Scholar 

  • Ponson L, Bonamy D, Bouchaud E (2006c) Two-dimensional scaling properties of experimental fracture surfaces. Phys. Rev. Lett. 96:035506

    Article  Google Scholar 

  • Ponson L, Auradou H, Pessel M, Lazarus V, Hulin J-P (2007) Failure mechanisms and surface roughness statistics of fractured Fontainebleau sandstone. Phys. Rev. E 76:036108

    Article  Google Scholar 

  • Ponson L, Shabir Z, Van der Giessen E, Simone A (2017) Brittle intergranular fracture of two-dimensional disordered solids as a random walk (under review)

  • Pouchou JL, Boivin D, Beauchêne P, Besnerais GL, Vignon F (2002) 3D reconstruction of rough surfaces by SEM stereo imaging. Microchim. Acta 139:135–144

    Article  Google Scholar 

  • Ramanathan S, Ertas D, Fisher DS (1997) Quasistatic crack propagation in heterogeneous media. Phys. Rev. Lett. 79:873–876

    Article  Google Scholar 

  • Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J. Mech. Phys. Solids 45:535–563

    Article  Google Scholar 

  • Réthoré J, Estevez R (2013) Identification of a cohesive zone model from digital images at the micron-scale. J. Mech. Phys. Solids 61:1407–1420

    Article  Google Scholar 

  • Rice JR (1985) First-order variation in elastic fields due to variation in location of a planar crack front. J. Appl. Mech. 52:571–579

    Article  Google Scholar 

  • Roux S, Vandembroucq D, Hild F (2003) Effective toughness of heterogeneous brittle materials. Eur. J. Mech. A 22:743–749

    Article  Google Scholar 

  • Santucci S, Grob M, Toussaint R, Schmittbuhl J, Hansen A, Måløy KJ (2010) Fracture roughness scaling: a case study on planar cracks. EPL 92:44001

    Article  Google Scholar 

  • Santucci S, Måløy KJ, Delaplace A, Mathiesen J, Hansen A, Bakke J, Schmittbuhl J, Vanel L, Ray P (2007) Statistics of fracture surfaces. Phys. Rev. E 75:016104

    Article  Google Scholar 

  • Schmittbuhl J, Roux S, Vilotte JP, Måløy KJ (1995) Interfacial crack pinning: effect of nonlocal interactions. Phys. Rev. Lett. 74:1787–1790

    Article  Google Scholar 

  • Srivastava A, Ponson L, Osovski S, Bouchaud E, Tvergaard V, Needleman A (2014) Effect of inclusion density on ductile fracture toughness and roughness. J. Mech. Phys. Solids 63:62–79

    Article  Google Scholar 

  • Stojanova M, Santucci S, Vanel L, Ramos O (2014) High frequency monitoring reveals aftershocks in subcritical crack growth. Phys. Rev. Lett. 112:115502

    Article  Google Scholar 

  • Tallakstad KT, Toussaint R, Santucci S, Måløy KJ (2013) Non-Gaussian nature of fracture and the survival of fat-tail exponents. Phys. Rev. Lett. 110:145501

    Article  Google Scholar 

  • Tallakstad KT, Toussaint R, Santucci S, Schmittbuhl J, Måløy KJ (2011) Local dynamics of a randomly pinned crack front during creep and forced propagation: An experimental study. Phys. Rev. E 83:046108

    Article  Google Scholar 

  • Vasoya M, Leblond J-B, Ponson L (2013) A geometrically nonlinear analysis of coplanar crack propagation in some heterogeneous medium. Int. J. Solids Struct. 50:371–378

    Article  Google Scholar 

  • Vasoya M, Unni AB, Leblond JB, Lazarus V, Ponson L (2015) A theoretical and experimental study of crack pinning by strong heterogeneities. J. Mech. Phys. Solids 89:211–230

    Article  Google Scholar 

  • Vernède S, Ponson L, Bouchaud J-P (2015) Turbulent fracture surfaces: A footprint of damage percolation? Phys. Rev. Lett. 141:215501

    Article  Google Scholar 

  • Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crop. Prod. 19:245–254

    Article  Google Scholar 

  • Xia S, Ponson L, Ravichandran G, Bhattacharya K (2012) Toughening and asymmetry in peeling of heterogeneous adhesives. Phys. Rev. Lett. 108:196101

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge his colleagues Daniel Bonamy, Jean-Philippe Bouchaud, Julien Chopin, Angelo Simone and Stephane Vernède for their contributions to this work and thank Elisabeth Bouchaud and Jean-Baptiste Leblond for their invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Ponson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponson, L. Statistical aspects in crack growth phenomena: how the fluctuations reveal the failure mechanisms. Int J Fract 201, 11–27 (2016). https://doi.org/10.1007/s10704-016-0117-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0117-7

Keywords

Navigation