Skip to main content
Log in

Fracture of graphene: a review

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Fracture is one of the most prominent concerns for large scale applications of graphene. In this paper, we review some of the recent progresses in experimental and theoretical studies on the fracture behaviors of graphene, with discussions touching theoretical strength, mode I fracture toughness, mixed mode fracture, chemical fracture, irradiation fracture, dynamic fracture, impact fracture, and sonication fracture. In spite of rapid developments in experiments and simulations, there are still significant yet unresolved issues related to the fracture of graphene, examples including: (1) Can one enhance the toughness of graphene with designed topological defects? (2) How does grain size affect the strength of polycrystalline graphene? (3) How do the out-of-plane effects (e.g., wrinkle caused by external loading or curvature induced by topological defects) influence the fracture of graphene? (4) Can one develop a continuum model with the ability to capture graphene fracture with complicated modes, such as shear fracture coupled with wrinkling deformation and tear fracture? (5) How does fracture occur when tearing a polycrystalline graphene sheet? (6) Can one control the fracture behavior of graphene by combing the chemical, irradiation and stress effect? (7) How fast can cracks propagate in graphene? (8) What is the behavior of interfacial cracks in graphene, i.e., cracks along the grain boundaries or interfaces of heterogeneous structures? (9) How does a multilayer graphene membrane break under high speed impact and why such structures can absorb a large amount of kinetic energy? (10) Can one tailor/design the graphene structures with controlled fracture? The intention here is not to provide complete answers to such questions, but to draw attention from the mechanics community to them as potential research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. The Latin word ruga is used to refer a large-amplitude state of wrinkles, creases, ridges or folds (Diab et al. 2013).

References

  • Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  • Ansari R, Motevalli B, Montazeri A, Ajori S (2011) Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Commun 151:1141–1146

    Article  Google Scholar 

  • Audoly B, Reis P, Roman B (2005) Cracks in thin sheets: When geometry rules the fracture path. Phys Rev Lett 95:025502

    Article  Google Scholar 

  • Backofen R, Gräf M, Potts D, Praetorius S, Voigt A, Witkowski T (2011) A continuous approach to discrete ordering on \(\text{ S }\wedge 2\). Multiscale Model Simul 9:314–334

    Article  Google Scholar 

  • Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  Google Scholar 

  • Bagri A, Kim S-P, Ruoff RS, Shenoy VB (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 11:3917–3921

    Article  Google Scholar 

  • Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194

    Article  Google Scholar 

  • Baykasoglu C, Mugan A (2012) Nonlinear fracture analysis of single-layer graphene sheets. Eng Fract Mech 96:241–250

    Article  Google Scholar 

  • Becton M, Zeng X, Wang X (2015) Computational study on the effects of annealing on the mechanical properties of polycrystalline graphene. Carbon 86:338–349

    Article  Google Scholar 

  • Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001

    Article  Google Scholar 

  • Blees MK, Barnard AW, Rose PA, Roberts SP, McGill KL, Huang PY, Ruyack AR, Kevek JW, Kobrin B, Muller DA, McEuen PL (2015) Graphene kirigami. Nature 524:204–207

  • Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501

    Article  Google Scholar 

  • Brau F (2014) Tearing of thin sheets: cracks interacting through an elastic ridge. Phys Rev E 90:062406

    Article  Google Scholar 

  • Brnner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783

    Article  Google Scholar 

  • Bu H, Chen Y, Zou M, Yi H, Bi K, Ni Z (2009) Atomistic simulations of mechanical properties of graphene nanoribbons. Phys Lett A 373:3359–3362

    Article  Google Scholar 

  • Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490–493

    Article  Google Scholar 

  • Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502

    Article  Google Scholar 

  • Campos LC, Manfrinato VR, Sanchez-Yamagishi JD, Kong J, Jarillo-Herrero P (2009) Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett 9:2600–2604

    Article  Google Scholar 

  • Cao A, Yuan Y (2012) Atomistic study on the strength of symmetric tilt grain boundaries in graphene. Appl Phys Lett 100:211912

    Article  Google Scholar 

  • Cao A, Qu J (2013) Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension. Appl Phys Lett 102:071902

    Article  Google Scholar 

  • Cao C, Sun Y, Filleter T (2014) Characterizing mechanical behavior of atomically thin films: a review. J Mater Res 29:338–347

    Article  Google Scholar 

  • Carpenter C, Maroudas D, Ramasubramaniam A (2013) Mechanical properties of irradiated single-layer graphene. Appl Phys Lett 103:013102

    Article  Google Scholar 

  • Castellanos-Gomez A, Singh V, van der Zant HS, Steele GA (2014) Mechanics of freely-suspended ultrathin layered materials. Annalen der Physik 527:27–44

  • Chen S, Chrzan D (2011) Continuum theory of dislocations and buckling in graphene. Phys Rev B 84:214103

    Article  Google Scholar 

  • Chew H, Moon M-W, Lee K, Kim K-S (2011) Compressive dynamic scission of carbon nanotubes under sonication: fracture by atomic ejection. Proc R Soc Math Phys Eng Sci 467:1270–1289

    Article  Google Scholar 

  • Cho Y, Shin J-H, Costa A, Kim TA, Kunin V, Li J, Lee SY, Yang S, Han HN, Choi I-S (2014) Engineering the shape and structure of materials by fractal cut. Proc Nat Acad Sci 111:17390–17395

    Article  Google Scholar 

  • Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. New J Phys 11:083019

    Article  Google Scholar 

  • Ci L, Xu Z, Wang L, Gao W, Ding F, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res 1:116–122

    Article  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2014) Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett 14:6171–6178

    Article  Google Scholar 

  • Curtin W (1990) On lattice trapping of cracks. J Mater Res 5:1549–1560

    Article  Google Scholar 

  • Daly M, Singh CV (2014) A kinematic study of energy barriers for crack formation in graphene tilt boundaries. J Appl Phys 115:223513

    Article  Google Scholar 

  • Daly M, Reeve M, Singh CV (2015) Effects of topological point reconstructions on the fracture strength and deformation mechanisms of graphene. Comput Mater Sci 97:172–180

    Article  Google Scholar 

  • Dewapriya M, Phani AS, Rajapakse R (2013) Influence of temperature and free edges on the mechanical properties of graphene. Modell Simul Mater Sci Eng 21:065017

    Article  Google Scholar 

  • Dewapriya M, Rajapakse R, Phani A (2014) Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int J Fract 187:199–212

    Article  Google Scholar 

  • Dewapriya M, Rajapakse R (2014) Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J Appl Mech 81:081010

    Article  Google Scholar 

  • Diab M, Zhang T, Zhao R, Gao H, Kim K-S (2013) Ruga mechanics of creasing: from instantaneous to setback creases. Proc R Soc A Math Phys Eng Sci 469:20120753

    Article  Google Scholar 

  • Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  Google Scholar 

  • Elder K, Katakowski M, Haataja M, Grant M (2002) Modeling elasticity in crystal growth. Phys Rev Lett 88:245701

    Article  Google Scholar 

  • Erskine D, Nellis W (1991) Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature 349:317–319

    Article  Google Scholar 

  • Erskine DJ, Nellis WJ (1992) Shock-induced martensitic transformation of highly oriented graphite to diamond. J Appl Phys 71:4882–4886

    Article  Google Scholar 

  • Feng J, Li W, Qian X, Qi J, Qi L, Li J (2012) Patterning of graphene. Nanoscale 4:4883–4899

    Article  Google Scholar 

  • Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93:113107

    Article  Google Scholar 

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100:5597–5600

    Article  Google Scholar 

  • Gao H, Chen S (2005) Flaw tolerance in a thin strip under tension. J Appl Mech 72:732–737

    Article  Google Scholar 

  • Garaj S, Liu S, Golovchenko JA, Branton D (2013) Molecule-hugging graphene nanopores. Proc Nat Acad Sci 110:12192–12196

    Article  Google Scholar 

  • Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim A (2008) Free-standing graphene at atomic resolution. Nat Nanotechnol 3:676–681

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  • Ghatak A, Mahadevan L (2003) Crack street: the cycloidal wake of a cylinder tearing through a thin sheet. Phys Rev Lett 91:215507

    Article  Google Scholar 

  • Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330:946–948

    Article  Google Scholar 

  • Gu XW, Wu Z, Zhang YW, Srolovitz DJ, Greer JR (2013) Microstructure versus flaw: mechanisms of failure and strength in nanostructures. Nano Lett 13:5703–5709

    Article  Google Scholar 

  • Hamm E, Reis P, LeBlanc M, Roman B, Cerda E (2008) Tearing as a test for mechanical characterization of thin adhesive films. Nat Mater 7:386–390

    Article  Google Scholar 

  • Han J, Ryu S, Sohn D, Im S (2014) Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene. Carbon 68:250–257

    Article  Google Scholar 

  • Hao F, Fang D (2012) Mechanical deformation and fracture mode of polycrystalline graphene: atomistic simulations. Phys Lett A 376:1942–1947

    Article  Google Scholar 

  • Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723

    Article  Google Scholar 

  • Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873

    Article  Google Scholar 

  • He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75:124–132

    Article  Google Scholar 

  • Hinnefeld JH, Gill ST, Zhu S, Swanson WJ, Li T, Mason N (2014) Reversible electronic and mechanical properties of ripped graphene. arXiv preprint arXiv:1407.0382

  • Hu L, Wyant S, Muniz AR, Ramasubramaniam A, Maroudas D (2015) Mechanical behavior and fracture of graphene nanomeshes. J Appl Phys 117:024302

    Article  Google Scholar 

  • Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392

    Article  Google Scholar 

  • Hang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253

    Article  Google Scholar 

  • Huang X, Yang H, van Duin AC, Hsia KJ, Zhang S (2012) Chemomechanics control of tearing paths in graphene. Phys Rev B 85:195453

    Article  Google Scholar 

  • Jack R, Sen D, Buehler MJ (2010) Graphene nanocutting through nanopatterned vacancy defects. J Comput Theor Nanosci 7:354–359

    Article  Google Scholar 

  • Jhon YI, Chung PS, Smith R, Min KS, Yeom GY, Jhon MS (2013) Grain boundaries orientation effects on tensile mechanics of polycrystalline graphene. RSC Adv 3:9897–9903

    Article  Google Scholar 

  • Jhon YI, Jhon YM, Yeom GY, Jhon MS (2014) Orientation dependence of the fracture behavior of graphene. Carbon 66:619–628

    Article  Google Scholar 

  • Jia Y, Zhu W, Li T, Liu B (2012) Study on the mechanisms and quantitative law of mode I supersonic crack propagation. J Mech Phys Solids 60:1447–1461

    Article  Google Scholar 

  • Jiang D-E, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024

    Article  Google Scholar 

  • Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880

    Article  Google Scholar 

  • Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325

    Article  Google Scholar 

  • Jin C, Lan H, Peng L, Suenaga K, Iijima S (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102:205501

    Article  Google Scholar 

  • Jin Y, Yuan F (2005) Atomistic simulations of J-integral in 2D graphene nanosystems. J Nanosci Nanotechnol 5:2099–2107

    Article  Google Scholar 

  • Jung G, Qin Z, Buehler MJ (2015) Molecular mechanics of polycrystalline graphene with enhanced fracture toughness. Extreme Mech Lett 2:52. doi:10.1016/j.eml.2015.01.007

    Article  Google Scholar 

  • Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS, Piao L, Park B, Suh K-Y, Kim T-I, Choi M (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222–226

    Article  Google Scholar 

  • Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K (2013) A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nat Chem 5:739–744

    Article  Google Scholar 

  • Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of [beta]-sheet crystals in silk. Nat Mater 9:359–367

    Article  Google Scholar 

  • Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2010) Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface. Phys Rev B 81:100103

    Article  Google Scholar 

  • Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2011) Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat Mater 10:693–697

    Article  Google Scholar 

  • Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75:075412

    Article  Google Scholar 

  • Kim K, Artyukhov VI, Regan W, Liu Y, Crommie M, Yakobson BI, Zettl A (2011a) Ripping graphene: preferred directions. Nano Lett 12:293–297

    Article  Google Scholar 

  • Kim K, Lee Z, Regan W, Kisielowski C, Crommie M, Zettl A (2011b) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146

    Article  Google Scholar 

  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  • Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  • Komaragiri U, Begley M, Simmonds J (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72:203–212

    Article  Google Scholar 

  • Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  Google Scholar 

  • Kotakoski J, Meyer JC (2012) Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Phys Rev B 85:195447

    Article  Google Scholar 

  • Krasheninnikov A, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6:723–733

    Article  Google Scholar 

  • Kruglova O, Brau F, Villers D, Damman P (2011) How geometry controls the tearing of adhesive thin films on curved surfaces. Phys Rev Lett 107:164303

    Article  Google Scholar 

  • Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    Article  Google Scholar 

  • Kumar S, Haque M, Gao H (2009) Notch insensitive fracture in nanoscale thin films. Appl Phys Lett 94:253104

    Article  Google Scholar 

  • Kumar S, Li X, Haque A, Gao H (2011) Is stress concentration relevant for nanocrystalline metals? Nano Lett 11:2510–2516

    Article  Google Scholar 

  • Kumar S, Haque M, Gao H (2013) Transformation induced toughening and flaw tolerance in pure nanocrystalline aluminum. Int J Plast 44:121–128

    Article  Google Scholar 

  • Kumar S, Parks D (2015) Strain shielding from mechanically-activated covalent bonding during nano-indentation of graphene delays the onset of failure. Nano Lett. doi:10.1021/nl503641c

    Google Scholar 

  • Le M-Q, Batra RC (2013) Single-edge crack growth in graphene sheets under tension. Comput Mater Sci 69:381–388

    Article  Google Scholar 

  • Le M-Q, Batra RC (2014) Crack propagation in pre-strained single layer graphene sheets. Comput Mater Sci 84:238–243

    Article  Google Scholar 

  • Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  • Lee G-H, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W (2013) High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340:1073–1076

    Article  Google Scholar 

  • Lee J-H, Lee EK, Joo W-J, Jang Y, Kim B-S, Lim JY, Choi S-H, Ahn SJ, Ahn JR, Park M-H (2014a) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344:286–289

    Article  Google Scholar 

  • Lee J-H, Loya PE, Lou J, Thomas EL (2014b) Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346:1092–1096

    Article  Google Scholar 

  • Lehtinen O, Kotakoski J, Krasheninnikov A, Keinonen J (2011) Cutting and controlled modification of graphene with ion beams. Nanotechnology 22:175306

    Article  Google Scholar 

  • Lehtinen O, Kurasch S, Krasheninnikov A, Kaiser U (2013) Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat Commun 4:2098

    Article  Google Scholar 

  • Levendorf MP, Kim C-J, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627–632

    Article  Google Scholar 

  • Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101

    Article  Google Scholar 

  • Li N-N, Sha Z, Pei Q-X, Zhang Y-W (2014a) Hydrogenated grain boundaries control the strength and ductility of polycrystalline graphene. J Phys Chem C 118:13769–13774

    Article  Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E (2009a) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  • Li X, Wei Y, Lu L, Lu K, Gao H (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464:877–880

    Article  Google Scholar 

  • Li Y, Datta D, Li S, Li Z, Shenoy VB (2014b) Patterned arrangement regulated mechanical properties of hydrogenated graphene. Comput Mater Sci 93:68–73

    Article  Google Scholar 

  • Li Y, Datta D, Li Z (2015) Anomalous mechanical characteristics of graphene with tilt grain boundaries tuned by hydrogenation. Carbon 90:234–241

    Article  Google Scholar 

  • Li Z, Zhang W, Luo Y, Yang J, Hou JG (2009b) How graphene is cut upon oxidation? J Am Chem Soc 131:6320–6321

    Article  Google Scholar 

  • Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  Google Scholar 

  • Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120

    Article  Google Scholar 

  • Liu T-H, Gajewski G, Pao C-W, Chang C-C (2011) Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations. Carbon 49:2306–2317

    Article  Google Scholar 

  • Liu T-H, Pao C-W, Chang C-C (2012) Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon 50:3465–3472

    Article  Google Scholar 

  • Liu Y, Yakobson BI (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett 10:2178–2183

    Article  Google Scholar 

  • Liu Y, Dobrinsky A, Yakobson BI (2010) Graphene edge from armchair to zigzag: the origins of nanotube chirality? Phys Rev Lett 105:235502

    Article  Google Scholar 

  • Liu Y, Chen X (2014) Mechanical properties of nanoporous graphene membrane. J Appl Phys 115:034303

    Article  Google Scholar 

  • Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg KP (2013) In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol 8:119–124

    Article  Google Scholar 

  • Lohrasebi A, Amini M, Neek-Amal M (2014) The effects of temperature and vacancies on dynamics of crack in graphene sheet. AIP Adv 4:057113

    Article  Google Scholar 

  • López-Polín G, Gómez-Herrero J, Gómez-Navarro C (2015) Confining crack propagation in defective graphene. Nano Lett 15:2050–2054

    Article  Google Scholar 

  • Los JH, Ghiringhelli LM, Meijer EJ, Fasolino A (2005) Improved long-range reactive bond-order potential for carbon. I. Construction. Phys Rev B 72:214102

    Article  Google Scholar 

  • Lu K, Lu L, Suresh S (2009a) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–352

    Article  Google Scholar 

  • Lu L, Chen X, Huang X, Lu K (2009b) Revealing the maximum strength in nanotwinned copper. Science 323:607–610

    Article  Google Scholar 

  • Lu Q, Huang R (2009) Nonlinear mechanics of single-atomic-layer graphene sheets. Int J Appl Mech 1:443–467

    Article  Google Scholar 

  • Lu Q, Huang R (2010) Excess energy and deformation along free edges of graphene nanoribbons. Phys Rev B 81:155410

    Article  Google Scholar 

  • Lu Q, Gao W, Huang R (2011) Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modell Simul Mater Sci Eng 19:054006

    Article  Google Scholar 

  • Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson AC (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921

    Article  Google Scholar 

  • Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  • Min K, Aluru N (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98:013113

    Article  Google Scholar 

  • Moura MJ, Marder M (2013) Tearing of free-standing graphene. Phys Rev E 88:032405

    Article  Google Scholar 

  • Mundy CJ, Curioni A, Goldman N, Kuo I-FW, Reed EJ, Fried LE, Ianuzzi M (2008) Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression. J Chem Phys 128:184701

    Article  Google Scholar 

  • Nardelli MB, Yakobson BI, Bernholc J (1998) Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett 81:4656

    Article  Google Scholar 

  • Neto AC, Guinea F, Peres N, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  • Novoselov K, Geim AK, Morozov S, Jiang D, Grigorieva MKI, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • O’Hern SC, Stewart CA, Boutilier MS, Idrobo J-C, Bhaviripudi S, Das SK, Kong J, Laoui T, Atieh M, Karnik R (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138

    Article  Google Scholar 

  • O’Hern SC, Boutilier MS, Idrobo J-C, Song Y, Kong J, Laoui T, Atieh M, Karnik R (2014) Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14:1234–1241

    Article  Google Scholar 

  • Omeltchenko A, Yu J, Kalia RK, Vashishta P (1997) Crack front propagation and fracture in a graphite sheet: a molecular-dynamics study on parallel computers. Phys Rev Lett 78:2148

    Article  Google Scholar 

  • Ozden S, Autreto PA, Tiwary CS, Khatiwada S, Machado L, Galvao DS, Vajtai R, Barrera EV, Ajayan M, Ajayan P (2014) Unzipping carbon nanotubes at high impact. Nano Lett 14:4131–4137

    Article  Google Scholar 

  • Palacios J, Fernández-Rossier J, Brey L (2008) Vacancy-induced magnetism in graphene and graphene ribbons. Phys Rev B 77:195428

    Article  Google Scholar 

  • Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Pastewka L, Pou P, Pérez R, Gumbsch P, Moseler M (2008) Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys Rev B 78:161402

    Article  Google Scholar 

  • Pei Q-X, Zhang Y-W, Shenoy VB (2010) Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21:115709

    Article  Google Scholar 

  • Perriot R, Gu X, Lin Y, Zhakhovsky VV, Oleynik II (2013) Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials. Phys Rev B 88:064101

    Article  Google Scholar 

  • Pineau N (2013) Molecular dynamics simulations of shock compressed graphite. J Phys Chem C 117:12778–12786

    Article  Google Scholar 

  • Qi Z, Campbell DK, Park HS (2014) Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys Rev B 90:245437

  • Qin Z, Buehler MJ (2011) Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. Acs Nano 5:3034–3042

    Article  Google Scholar 

  • Qin Z, Taylor M, Huang M, Bertoldi K, Buehler MJ (2014) Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics. Nano Lett 14:6520–6525

    Article  Google Scholar 

  • Raccichini R, Varzi A, Passerini S, Scrosati B (2014) The role of graphene for electrochemical energy storage. Nat Mater. doi:10.1038/nmat4170

    Google Scholar 

  • Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  Google Scholar 

  • Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013) Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun 4:2811

    Article  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  • Robertson AW, Allen CS, Wu YA, He K, Olivier J, Neethling J, Kirkland AI, Warner JH (2012) Spatial control of defect creation in graphene at the nanoscale. Nat Commun 3:1144

    Article  Google Scholar 

  • Roman B (2013) Fracture path in brittle thin sheets: a unifying review on tearing. Int J Fract 182:209–237

    Article  Google Scholar 

  • Romero V, Roman B, Hamm E, Cerda E (2013) Spiral tearing of thin films. Soft Matter 9:8282–8288

    Article  Google Scholar 

  • Ruiz-Vargas CS, Zhuang HL, Huang PY, van der Zande AM, Garg S, McEuen PL, Muller DA, Hennig RG, Park J (2011) Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 11:2259–2263

    Article  Google Scholar 

  • Sanchez-Valencia JR, Dienel T, Gröning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512:61–64

    Article  Google Scholar 

  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LM, Dekker C (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167

    Article  Google Scholar 

  • Sen D, Novoselov KS, Reis PM, Buehler MJ (2010) Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. Small 6:1108–1116

    Article  Google Scholar 

  • Sha Z, Pei Q, Liu Z, Shenoy V, Zhang Y (2014a) Is the failure of large-area polycrystalline graphene notch sensitive or insensitive? Carbon 72:200–206

    Article  Google Scholar 

  • Sha Z, Quek S, Pei Q, Liu Z, Wang T, Shenoy V, Zhang Y (2014b) Inverse pseudo Hall-Petch relation in polycrystalline graphene. Sci Rep 4:5991

    Google Scholar 

  • Sha ZD, Wan Q, Pei QX, Quek SS, Liu ZS, Zhang YW, Shenoy VB (2014c) On the failure load and mechanism of polycrystalline graphene by nanoindentation. Sci Rep 4:7437

    Article  Google Scholar 

  • Shenderova O, Brenner D, Omeltchenko A, Su X, Yang L (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61:3877

    Article  Google Scholar 

  • Song Z, Artyukhov VI, Yakobson BI, Xu Z (2013a) Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett 13:1829–1833

    Google Scholar 

  • Song Z, Xu Z, Huang X, Kim J-Y, Zheng Q (2013b) On the fracture of supported graphene under pressure. J Appl Mech 80:040911

    Article  Google Scholar 

  • Song Z, Artyukhov V, Wu J, Yakobson BI, Xu Z (2014) Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano 9:401–408

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  • Suk ME, Aluru N (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1:1590–1594

    Article  Google Scholar 

  • Sun T, Fabris S (2011) Mechanisms for oxidative unzipping and cutting of graphene. Nano Lett 12:17–21

    Article  Google Scholar 

  • Takei A, Roman B, Bico J, Hamm E, Melo F (2013) Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the wulff plot. Phys Rev Lett 110:144301

    Article  Google Scholar 

  • Terdalkar SS, Huang S, Yuan H, Rencis JJ, Zhu T, Zhang S (2010) Nanoscale fracture in graphene. Chem Phys Lett 494:218–222

    Article  Google Scholar 

  • Teweldebrhan D, Balandin A (2009) Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett 94:013101

    Article  Google Scholar 

  • Theodosiou T, Saravanos D (2014) Numerical simulation of graphene fracture using molecular mechanics based nonlinear finite elements. Comput Mater Sci 82:56–65

    Article  Google Scholar 

  • Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K (2013) Ultrahard nanotwinned cubic boron nitride. Nature 493:385–388

    Article  Google Scholar 

  • Tsen AW, Brown L, Levendorf MP, Ghahari F, Huang PY, Havener RW, Ruiz-Vargas CS, Muller DA, Kim P, Park J (2012) Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336:1143–1146

    Article  Google Scholar 

  • Tserpes KI (2012) Strength of graphenes containing randomly dispersed vacancies. Acta Mech 223:669–678

    Article  Google Scholar 

  • Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  • Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  • Wang C, Liu Y, Lan L, Tan H (2013a) Graphene wrinkling: formation, evolution and collapse. Nanoscale 5:4454–4461

    Article  Google Scholar 

  • Wang C, Lan L, Liu Y, Tan H (2013b) Defect-guided wrinkling in graphene. Comput Mater Sci 77:250–253

    Article  Google Scholar 

  • Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlögl U, Yang W (2011) Doping monolayer graphene with single atom substitutions. Nano Lett 12:141–144

    Article  Google Scholar 

  • Wang M, Yan C, Ma L, Hu N, Chen M (2012) Effect of defects on fracture strength of graphene sheets. Comput Mater Sci 54:236–239

    Article  Google Scholar 

  • Wang S, Yang B, Zhang S, Yuan J, Si Y, Chen H (2014) Mechanical properties and failure mechanisms of graphene under a central load. ChemPhysChem 15:2749–2755

    Article  Google Scholar 

  • Warner JH, Margine ER, Mukai M, Robertson AW, Giustino F, Kirkland AI (2012) Dislocation-driven deformations in graphene. Science 337:209–212

    Article  Google Scholar 

  • Warner JH, Fan Y, Robertson AW, He K, Yoon E, Lee GD (2013) Rippling graphene at the nanoscale through dislocation addition. Nano Lett 13:4937–4944

    Article  Google Scholar 

  • Wei X, Kysar JW (2012) Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int J Solids Struct 49:3201–3209

    Article  Google Scholar 

  • Wei X, Xiao S, Li F, Tang D, Chen Q, Bando Y, Golberg D (2015) Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett 15:689–694

    Article  Google Scholar 

  • Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M (2012) The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat Mater 11:759–763

    Article  Google Scholar 

  • Wetzel ED, Balu R, Beaudet TD (2015) A theoretical consideration of the ballistic response of continuous graphene membranes. J Mech Phys Solids 82:23–31

    Article  Google Scholar 

  • Wu J, Wei Y (2013) Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. J Mech Phys Solids 61:1421–1432

    Article  Google Scholar 

  • Xia F, Farmer DB, Lin Y-M, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718

    Article  Google Scholar 

  • Xiao J, Staniszewski J, Gillespie J Jr (2009) Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct 88:602–609

    Article  Google Scholar 

  • Xiao J, Staniszewski J, Gillespie J Jr (2010) Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects. Mater Sci Eng A 527:715–723

    Article  Google Scholar 

  • Xiao S, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193:1645–1669

    Article  Google Scholar 

  • Xu L, Wei N, Xu X, Fan Z, Zheng Y (2013a) Defect-activated self-assembly of multilayered graphene paper: a mechanically robust architecture with high strength. J Mater Chem A 1:2002–2010

    Article  Google Scholar 

  • Xu L, Wei N, Zheng Y (2013b) Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology 24:505703

    Article  Google Scholar 

  • Xu M, Tabarraei A, Paci JT, Oswald J, Belytschko T (2012) A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract 173:163–173

    Article  Google Scholar 

  • Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543

    Article  Google Scholar 

  • Xu Z (2009) Graphene nano-ribbons under tension. J Comput Theor Nanosci 6:625–628

    Article  Google Scholar 

  • Yang Z, Huang Y, Ma F, Sun Y, Xu K, Chu PK (2015a) Temperature and strain-rate effects on the deformation behaviors of nano-crystalline graphene sheets. Eur Phys J B 88:1–8

    Google Scholar 

  • Yang Z, Huang Y, Ma F, Sun Y, Xu K, Chu PK (2015b) Size-dependent deformation behavior of nanocrystalline graphene sheets. Mate Sci Eng B 198:95–101

    Article  Google Scholar 

  • Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75:125408

    Article  Google Scholar 

  • Yazyev OV, Louie SG (2010a) Topological defects in graphene: dislocations and grain boundaries. Phys Rev B 81:195420

    Article  Google Scholar 

  • Yazyev OV, Louie SG (2010b) Electronic transport in polycrystalline graphene. Nat Mater 9:806–809

    Article  Google Scholar 

  • Yazyev OV, Chen YP (2014) Polycrystalline graphene and other two-dimensional materials. Nat Nanotechnol 9:755–767

    Article  Google Scholar 

  • Yi L, Yin Z, Zhang Y, Chang T (2013) A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene. Carbon 51:373–380

    Article  Google Scholar 

  • Yin H, Qi HJ, Fan F, Zhu T, Wang B, Wei Y (2015) Griffith criterion for brittle fracture in graphene. Nano Lett 15:1918–1924

    Article  Google Scholar 

  • Zandiatashbar A, Lee G-H, An SJ, Lee S, Mathew N, Terrones M, Hayashi T, Picu CR, Hone J, Koratkar N (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3168

    Article  Google Scholar 

  • Zhang B, Mei L, Xiao H (2012a) Nanofracture in graphene under complex mechanical stresses. Appl Phys Lett 101:121915

    Article  Google Scholar 

  • Zhang H, Lee G, Cho K (2011) Thermal transport in graphene and effects of vacancy defects. Phys Rev B 84:115460

    Article  Google Scholar 

  • Zhang J, Zhao J, Lu J (2012b) Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano 6:2704–2711

    Article  Google Scholar 

  • Zhang P, Ma LL, Fan FF, Zeng Z, Peng C, Loya PE, Liu Z, Gong YJ, Zhang JN, Zhang XX, Ajayan PM, Zhu T, Lou J (2014a) Fracture toughness of graphene. Nat Commun 5:3782

    Google Scholar 

  • Zhang S, Zhu T, Belytschko T (2007) Atomistic and multiscale analyses of brittle fracture in crystal lattices. Phys Rev B 76:094114

    Article  Google Scholar 

  • Zhang T, Li XY, Kadkhodaei S, Gao HJ (2012c) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610

    Article  Google Scholar 

  • Zhang T, Li XY, Gao HJ (2014b) Defects controlled wrinkling and topological design in graphene. J Mech Phys Solids 67:2–13

    Article  Google Scholar 

  • Zhang T, Li X, Gao H (2014c) Designing graphene structures with controlled distributions of topological defects: a case study of toughness enhancement in graphene ruga. Extreme Mech Lett 1:3–8

    Article  Google Scholar 

  • Zhang T, Gao H (2015) Toughening graphene with topological defects: a perspective. J Appl Mech 82:051001

    Article  Google Scholar 

  • Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  Google Scholar 

  • Zhang Z, Wang X, Lee JD (2014c) An atomistic methodology of energy release rate for graphene at nanoscale. J Appl Phys 115:114314

    Article  Google Scholar 

  • Zhang Z, Yang Y, Xu F, Wang L, Yakobson BI (2015a) Unraveling the sinuous grain boundaries in graphene. Adv Funct Mater 25:367–373

    Article  Google Scholar 

  • Zhang Z, Kutana A, Yakobson BI (2015b) Edge reconstruction-mediated graphene fracture. Nanoscale 7:2716–2722

    Article  Google Scholar 

  • Zhao H, Min K, Aluru N (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015

  • Zhao H, Aluru N (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108:064321

    Article  Google Scholar 

  • Zhao S, Xue J (2013) Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. J Phys D Appl Phys 46:135303

    Article  Google Scholar 

  • Zhu S, Huang Y, Li T (2014) Extremely compliant and highly stretchable patterned graphene. Appl Phys Lett 104:173103

    Article  Google Scholar 

  • Zhu W, Wang H, Yang W (2012) Evolution of graphene nanoribbons under low-voltage electron irradiation. Nanoscale 4:4555–4561

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by NSF through grant CMMI-1161749 and MRSEC Program (Award No. DMR-0520651) at Brown University, and by the China Scholarship Council through a graduate fellowship to T.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, X. & Gao, H. Fracture of graphene: a review. Int J Fract 196, 1–31 (2015). https://doi.org/10.1007/s10704-015-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0039-9

Keywords

Navigation