Skip to main content
Log in

Reachability computation for polynomial dynamical systems

  • Published:
Formal Methods in System Design Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of computing the bounded time reachable set of a polynomial discrete-time dynamical system. The problem is well-known for being difficult when nonlinear systems are considered. In this regard, we propose three reachability methods that differ in the set representation. The proposed algorithms adopt boxes, parallelotopes, and parallelotope bundles to construct flowpipes that contain the actual reachable sets. The latter is a new data structure for the symbolic representation of polytopes. Our methods exploit the Bernstein expansion of polynomials to bound the images of sets. The scalability and precision of the presented methods are analyzed on a number of dynamical systems, in comparison with other existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. A set of nonempty subsets of X whose union contains the given set X is called a cover of X.

  2. http://tommasodreossi.github.io/sapo/.

  3. http://www.ginac.de.

  4. https://www.gnu.org/software/glpk/.

  5. https://www.bitcraze.io/.

References

  1. Althoff M, Le Guernic C, Krogh BH (2011) Reachable set computation for uncertain time-varying linear systems. In: Hybrid systems: computation and control, HSCC. ACM, pp 93–102

  2. Anai H, Weispfenning V (2001) Reach set computations using real quantifier elimination. In: Hybrid systems: computation and control, HSCC, pp 63–76

  3. Asarin E, Bournez O, Dang T, Maler O (2000) Approximate reachability analysis of piecewise-linear dynamical systems. In: Hybrid systems: computation and control, HSCC. Springer, pp 20–31

  4. Ashraf Q, Galor O (2011) Cultural diversity, geographical isolation, and the origin of the wealth of nations. Technical report, National Bureau of Economic Research

  5. Balluchi A, Casagrande A, Collins P, Ferrari A, Villa T, Sangiovanni-Vincentelli AL (2006) Ariadne: a framework for reachability analysis of hybrid automata. In: Mathematical theory of networks and systems, MTNS. Citeseer

  6. Batt G, Yordanov B, Weiss R, Belta C (2007) Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23(18):2415–2422

    Article  Google Scholar 

  7. Berman S, Halász Á, Kumar V (2007) Marco: a reachability algorithm for multi-affine systems with applications to biological systems. In: Hybrid systems: computation and control, HSCC. Springer, pp 76–89

  8. Bernstein SN (1912) Démonstration du théorème de weierstrass fondée sur le calcul des probabilités. Commun Soc Math Kharkov 21(4/5):1–2

    MATH  Google Scholar 

  9. Berz M, Makino K (1998) Verified integration of odes and flows using differential algebraic methods on high-order taylor models. Reliab Comput 4(4):361–369

    Article  MathSciNet  MATH  Google Scholar 

  10. Botchkarev O, Tripakis S (2000) Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Hybrid systems: computation and control, HSCC. Springer, pp 73–88

  11. Bournez O, Maler O, Pnueli A (1999) Orthogonal polyhedra: representation and computation. In: Hybrid systems: computation and control, HSCC. Springer, pp 46–60

  12. Casagrande A, Dreossi, T (2013) pyhybrid analysis: a package for semantics analysis of hybrid systems. In: Digital system design, DSD, pp 815–818. doi:10.1109/DSD.2013.143

  13. Casagrande A, Dreossi T, Fabriková J, Piazza C (2014) \(\epsilon \)-semantics computations on biological systems. Inf Comput 236:35–51. doi:10.1016/j.ic.2014.01.011

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen L, Miné A, Wang J, Cousot P (2009) Interval polyhedra: an abstract domain to infer interval linear relationships. In: Static analysis symposium, SAS, pp 309–325

  15. Chen X, Ábrahám E (2011) Choice of directions for the approximation of reachable sets for hybrid systems. In: International conference on computer aided systems theory, EUROCAST. Springer, pp 535–542

  16. Chen X, Abraham E, Sankaranarayanan S (2012) Taylor model flowpipe construction for non-linear hybrid systems. In: Real-time systems symposium, RTSS. IEEE, pp 183–192

  17. Chen X, Ábrahám E, Sankaranarayanan S (2013) Flow*: an analyzer for non-linear hybrid systems. In: Computer aided verification, CAV, pp 258–263

  18. Chutinan A, Krogh BH (1998) Computing polyhedral approximations to flow pipes for dynamic systems. In: Conference on decision and control, CDC, vol 2. IEEE, pp 2089–2094

  19. Chutinan A, Krogh BH (1999) Computing approximating automata for a class of linear hybrid systems. In: Hybrid systems V. Springer, pp. 16–37

  20. Chutinan A, Krogh BH (1999) Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Hybrid systems: computation and control, HSCC. Springer, pp 76–90

  21. Coxeter HSM (1973) Regular polytopes. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  22. da Cunha AEC (2015) Benchmark: quadrotor attitude control. In: Applied verification for continuous and hybrid systems, ARCH

  23. Dang T (2006) Approximate reachability computation for polynomial systems. In: Hybrid systems: computation and control, HSCC. Springer, pp 138–152

  24. Dang T, Dreossi T, Piazza C (2014) Parameter synthesis using parallelotopic enclosure and applications to epidemic models. In: Hybrid systems and biology, HSB, pp 67–82

  25. Dang T, Dreossi T, Piazza C (2015) Parameter synthesis through temporal logic specifications. In: Formal methods, FM, pp 213–230

  26. Dang T, Testylier R (2012) Reachability analysis for polynomial dynamical systems using the Bernstein expansion. Reliab Comput 17(2):128–152

    MathSciNet  Google Scholar 

  27. Dang TXT (2000) Verification and synthesis of hybrid systems. PhD thesis, Institut National Polytechnique de Grenoble-INPG

  28. Davis PJ, Rabinowitz P (2007) Methods of numerical integration. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  29. Dreossi T (2016) Sapo. http://tommasodreossi.github.io/sapo/

  30. Dreossi T (2016) Sapo: A tool for the reachability computation and parameter synthesis of polynomial dynamical systems. HSCC (in press)

  31. Dreossi T, Dang T (2014) Parameter synthesis for polynomial biological models. In: Hybrid systems: computation and control, HSCC, pp 233–242

  32. Eggers A, Ramdani N, Nedialkov NS, Fränzle M (2012) Improving the sat modulo ode approach to hybrid systems analysis by combining different enclosure methods. Softw Syst Model 14(1):121–148

    Article  MATH  Google Scholar 

  33. Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29(6):379–419

    Article  MathSciNet  MATH  Google Scholar 

  34. Frehse G (2005) Phaver: algorithmic verification of hybrid systems past hytech. In: Hybrid systems: computation and control, HSCC. Springer, pp 258–273

  35. Frehse G, Le Guernic C, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A, Dang T, Maler O (2011) Spaceex: scalable verification of hybrid systems. In: Computer aided verification, CAV. Springer, pp 379–395

  36. Galor O (2007) Discrete dynamical systems. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  37. Gao S (2012) Computable analysis, decision procedures, and hybrid automata: a new framework for the formal verification of cyber-physical systems. PhD thesis, PhD thesis, Carnegie Mellon University

  38. Garloff J, Smith AP (2001) Investigation of a subdivision based algorithm for solving systems of polynomial equations. Nonlinear Anal Theory Methods Appl 47(1):167–178

    Article  MathSciNet  MATH  Google Scholar 

  39. Girard A (2005) Reachability of uncertain linear systems using zonotopes. In: Hybrid systems: computation and control, HSCC. Springer, pp 291–305

  40. Girard A, Le Guernic C, Maler O (2006) Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hybrid systems: computation and control, HSCC. Springer, pp 257–271

  41. Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the mpi message passing interface standard. Parallel Comput 22(6):789–828

    Article  MATH  Google Scholar 

  42. Henzinger TA, Ho PH, Wong-Toi H (1997) Hytech: a model checker for hybrid systems. In: Computer aided verification, CAV. Springer, pp 460–463

  43. Hildebrand FB (1987) Introduction to numerical analysis. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  44. Jódar L, Villanueva RJ, Arenas AJ, González GC (2008) Nonstandard numerical methods for a mathematical model for influenza disease. Math Comput Simul 79(3):622–633

    Article  MathSciNet  MATH  Google Scholar 

  45. Karp RM (1972) Reducibility among combinatorial problems. Springer, Berlin

    Book  MATH  Google Scholar 

  46. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. R Soc Lond A Math Phys Eng Sci 115:700–721

    Article  MATH  Google Scholar 

  47. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2008) Systems biology in practice: concepts, implementation and application. Wiley, New York

    Google Scholar 

  48. Kong S, Gao S, Chen W, Clarke E (2015) dreach: \(\delta \)-reachability analysis for hybrid systems. In: Tools and algorithms for the construction and analysis of systems, TACAS. Springer, pp 200–205

  49. Kostousova E (1998) State estimation for dynamic systems via parallelotopes optimization and parallel computations. Optim Methods Softw 9(4):269–306

    Article  MathSciNet  MATH  Google Scholar 

  50. Kostousovat EK (2001) Control synthesis via parallelotopes: optimzation and parallel compuations. Optim Methods Softw 4(14):267–310

    Article  Google Scholar 

  51. Kot M (1992) Discrete-time travelling waves: ecological examples. J Math Biol 30(4):413–436

    Article  MathSciNet  MATH  Google Scholar 

  52. Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80(1):109–136

    Article  MathSciNet  MATH  Google Scholar 

  53. Krommer AR (1994) Numerical integration: on advanced computer systems, vol 848. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  54. Kurzhanski AB, Varaiya P (2000) Ellipsoidal techniques for reachability analysis: internal approximation. Syst Control Lett 41(3):201–211

    Article  MathSciNet  MATH  Google Scholar 

  55. Kurzhanskiy AA, Varaiya P, et al (2006) Ellipsoidal toolbox. EECS Department, University of California, Berkeley, Technical report UCB/EECS-2006-46

  56. Kvasnica M, Grieder P, Baotić M, Morari M (2004) Multi-parametric toolbox (mpt). In: Hybrid systems: computation and control. HSCC, Springer, pp 448–462

  57. Lafferriere G, Pappas GJ, Yovine S (2001) Symbolic reachability computation for families of linear vector fields. J Symb Comput 32(3):231–253

    Article  MathSciNet  MATH  Google Scholar 

  58. Le Guernic C (2009) Reachability analysis of hybrid systems with linear continuous dynamics. PhD thesis, Université Joseph-Fourier-Grenoble I

  59. Le Guernic C, Girard A (2010) Reachability analysis of linear systems using support functions. Nonlinear Anal Hybrid Syst 4(2):250–262

    Article  MathSciNet  MATH  Google Scholar 

  60. Lotka AJ (1925) Elements of physical biology. Williams & Wilkins Company

  61. Mourrain B, Pavone JP (2009) Subdivision methods for solving polynomial equations. J Symb Comput 44(3):292–306. doi:10.1016/j.jsc.2008.04.016

    Article  MathSciNet  MATH  Google Scholar 

  62. Nataraj P, Arounassalame M (2007) A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int J Autom Comput 4(4):342–352

    Article  Google Scholar 

  63. Nvidia CUDA (2008) Programming guide, Nvida

  64. Platzer A (2007) Differential dynamic logic for verifying parametric hybrid systems. In: Automated reasoning with analytic tableaux and related methods, TABLEAUX, pp 216–232

  65. Platzer A (2008) Differential dynamic logic for hybrid systems. J Autom Reason 41(2):143–189. doi:10.1007/s10817-008-9103-8

    Article  MathSciNet  MATH  Google Scholar 

  66. Platzer A, Quesel J (2008) Keymaera: a hybrid theorem prover for hybrid systems (system description). In: International joint conference on automated reasoning, IJCAR, pp 171–178

  67. Van der Pol B (1926) Lxxxviii. On “relaxation-oscillations”. Lond Edinb Dublin Philos Mag J Sci 2(11):978–992

    Article  Google Scholar 

  68. Prabhakar P, Viswanathan M (2011) A dynamic algorithm for approximate flow computations. In: Hybrid systems: computation and control, HSCC, HSCC ’11. ACM, New York, NY, USA, pp 133–142. doi:10.1145/1967701.1967722

  69. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  70. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71(2):155–157

    Article  MathSciNet  MATH  Google Scholar 

  71. Sankaranarayanan S, Dang T, Ivančić F (2008) Symbolic model checking of hybrid systems using template polyhedra. In: Tools and algorithms for the construction and analysis of systems, TACAS. Springer, pp. 188–202

  72. Sankaranarayanan S, Sipma HB, Manna Z (2005) Scalable analysis of linear systems using mathematical programming. In: Verification, model checking, and abstract interpretation, VMCAI, pp 25–41

  73. Sassi MAB, Sankaranarayanan S (2015) Bernstein polynomial relaxations for polynomial optimization problems. arXiv preprint arXiv:1509.01156

  74. Sassi MAB, Testylier R, Dang T, Girard A (2012) Reachability analysis of polynomial systems using linear programming relaxations. In: Automated technology for verification and analysis, ATVA, pp 137–151

  75. Shisha O (1966) The Bernstein form of a polynomial. J Res Natl Bur Stand Math Math Phys B 70:79

    MathSciNet  MATH  Google Scholar 

  76. Stursberg O, Krogh BH (2003) Efficient representation and computation of reachable sets for hybrid systems. In: Hybrid systems: computation and control, HSCC. Springer, pp 482–497

  77. Varaiya P (2000) Reach set computation using optimal control. In: Inan M, Kurshan R (eds) Verification of digital and hybrid systems, NATO ASI series, vol 170. Springer, Berlin, pp 323–331

    Chapter  Google Scholar 

  78. Volterra V (1927) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C Ferrari

  79. Wildenberg J, Vano J, Sprott J (2006) Complex spatiotemporal dynamics in lotka-volterra ring systems. Ecol Complex 3(2):140–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Dreossi.

Additional information

This work is partially supported by Toyota under the CHESS center, DARPA BRASS project, ANR MALTHY project (ANR-12-INSE-003), and INdAM GNCS.

Appendix: Experiment details

Appendix: Experiment details

1.1 Van der Pol

$$\begin{aligned} D = \begin{pmatrix} 1 &{}\quad 0 \\ 0 &{}\quad 1 \\ -1 &{}\quad 1 \\ 1 &{}\quad 1 \\ \end{pmatrix} \quad T = \begin{pmatrix} 0 &{}\quad 1 \\ 2 &{}\quad 3 \\ 0 &{}\quad 2 \\ 1 &{}\quad 3 \\ 0 &{}\quad 3 \\ 1 &{}\quad 2 \\ \end{pmatrix} \end{aligned}$$
(54)

1.2 Rössler attractor

$$\begin{aligned} D = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 \\ 1 &{}\quad 0.5 &{}\quad 0 \\ 0.5 &{}\quad 0 &{}\quad 0.5 \\ \end{pmatrix} \quad T = \begin{pmatrix} 0 &{}\quad 1 &{}\quad 2 \\ 1 &{}\quad 2 &{}\quad 3\\ 2 &{}\quad 3 &{}\quad 4\\ \end{pmatrix} \end{aligned}$$
(55)

1.3 SIR epidemi model

$$\begin{aligned} D = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 \\ 1 &{}\quad 0.5 &{}\quad 0 \\ 0.5 &{}\quad 0 &{}\quad 0.5 \\ \end{pmatrix} \quad T = \begin{pmatrix} 0 &{}\quad 1 &{}\quad 2 \\ 1 &{}\quad 2 &{}\quad 3\\ 2 &{}\quad 3 &{}\quad 4\\ \end{pmatrix} \end{aligned}$$
(56)

1.4 Generalized Lotka–Volterra model

$$\begin{aligned} D = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ -1 &{}\quad 0 &{}\quad 0 &{}\quad -1 &{}\quad 1\\ \end{pmatrix} \quad T = \begin{pmatrix} 0 &{}\quad 1 &{}\quad 2 &{}\quad 3 &{}\quad 4\\ 1 &{}\quad 2 &{}\quad 3 &{}\quad 5 &{}\quad 6\\ 2 &{}\quad 3 &{}\quad 4 &{}\quad 5 &{}\quad 6\\ \end{pmatrix} \end{aligned}$$
(57)

1.5 Phosphorelay systems

$$\begin{aligned} D = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0\\ \end{pmatrix} \quad T = \begin{pmatrix} 0 &{}\quad 1 &{}\quad 2 &{}\quad 3 &{}\quad 4 &{}\quad 5 &{}\quad 6\\ 0 &{}\quad 1 &{}\quad 2 &{}\quad 4 &{}\quad 5 &{}\quad 6 &{}\quad 7\\ 0 &{}\quad 1 &{}\quad 2 &{}\quad 5 &{}\quad 6 &{}\quad 7 &{}\quad 8\\ 0 &{}\quad 1 &{}\quad 2 &{}\quad 5 &{}\quad 6 &{}\quad 7 &{}\quad 9\\ \end{pmatrix} \end{aligned}$$
(58)

1.6 Quadcopter drone

$$\begin{aligned} D_{(i,i)} = i \quad D_{(17,j)} = (0\ 0\ 0.5\ 0\ 0\ 0.5\ 0.5\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0.25) \end{aligned}$$
(59)

for \(i,j=0,1,\dots ,16\) and

$$\begin{aligned} T_{(i,j)} = {\left\{ \begin{array}{ll} 17 &{}\quad \text {if i=1 and j=5}\\ i &{}\quad \text {otherwise}\\ \end{array}\right. } \end{aligned}$$
(60)

for \(i=0,1,\dots ,16\) and \(j=0,1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreossi, T., Dang, T. & Piazza, C. Reachability computation for polynomial dynamical systems. Form Methods Syst Des 50, 1–38 (2017). https://doi.org/10.1007/s10703-016-0266-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10703-016-0266-3

Keywords

Navigation