Foundations of Science

, Volume 23, Issue 3, pp 475–510 | Cite as

Quantum Theory and the Nature of Consciousness

  • Thomas Görnitz


Our interest focusses on the idea, that consciousness is a powerful acting entity. Up to now there does not exist a scientific concept for this idea. This is not due to problems within the field of psychology or brain research, but rather in resisting theories of modern physics. That is, why we have to search for a solution in the field of physics. A solution can be found in a new understanding of the basics of physical theory. That could be given by abstract and absolute quantum bits of information (AQI bits). To avoid the popular misunderstanding of “information” as “meaningful” it was necessary to find a new word for the free-of-meaning AQI bits: the AQI bits establish a quantum pre-structure termed “Protyposis” (Greek: “pre-formation”), out of which real objects can be formed, starting from energetical and material elementary particles. The Protyposis AQI bits provide a pre-structure for all entities in natural sciences. They are the basic entities, whereof the physical nature of the brain, on the one hand, and the mental nature of consciousness, on the other hand, were formed during the cosmological and the following biological evolution. A deeper understanding of quantum structures may help to overcome the resistance against quantum theory in the field of brain research and consciousness. The key for an understanding is the concept of Protyposis, which means an abstract quantum information free of any definite meaning. With the AQI bits of the Protyposis, both, massless and massive quantum particles can be constructed. Even quantum information with special meanings, in example grammatically formulated thoughts, eventually could be explained. As long as the fundamental basis of quantum theory is misunderstood as being formed by a manifold of some small objects like atoms, quarks, or strings, the problem of understanding consciousness has no solution. If instead we understand quantum theory as based on truly simple quantum structures, there would be no longer fundamental problems for an understanding of consciousness.


Consciousness Psyche Philosophy of science Quantum information Evolution Protyposis 



I thank very much Jochen Schirmer and Brigitte Görnitz for considerably helpful advice. I thank also the referees for helpful remarks.


  1. Cardon, A. (2006). Artificial consciousness, artificial emotions, and autonomous robots. Cognitive Processing, 7, 245–267.CrossRefGoogle Scholar
  2. Castell, L., Drieschner, M., & Weizsäcker, C. F. V. (Eds.) (1981): Quantum theory and the structures of time and space 4. Papers presented at a conference held in Tutzing July 1980, München: Hanser.Google Scholar
  3. Chalmers, D. J. (1995a). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200–219.Google Scholar
  4. Chalmers, D. J. (1995b). The conscious mind (p. 95064). Santa Cruz, CA: Department of Philosophy, University of California, Santa Cruz.Google Scholar
  5. Coward, L. A., & Sun, R. (2007). Hierarchical approaches to understanding consciousness. Neural Networks, 20, 947–954.CrossRefGoogle Scholar
  6. Damasio, A. (2011). Self comes to mind: Constructing the conscious brain (p. 14). New York: Random House.Google Scholar
  7. Eckoldt, M. (2013). Kann das Gehirn das Gehirn verstehen?—Gespräche über Hirnforschung und die Grenzen unserer Erkenntnis (p. 20). Heidelberg: Carl-Auer Verlag.Google Scholar
  8. Feynman, R. P., Leighton, R. B., & Sands, M. (1966). The Feynman lectures on physics: Quantum mechanics (pp. 1–10). Reading, MA: Addison-Wesley.Google Scholar
  9. Finkelstein, D. (1966). Space-time-code. Physical Review, 184, 1261–1271.CrossRefGoogle Scholar
  10. Görnitz, T. (1999, 2006). Quanten sind andersDie verborgene Einheit der Welt. Heidelberg: Spektrum.Google Scholar
  11. Görnitz, T. (2011a). Deriving general relativity from considerations on quantum information. Advanced Science Letters, 4, 577–585.CrossRefGoogle Scholar
  12. Görnitz, T. (2011b). The meaning of quantum theory—Reinterpreting the Copenhagen interpretation. Advanced Science Letters, 4, 3727–3734.CrossRefGoogle Scholar
  13. Görnitz, T., & Görnitz, B. (2002, 2006, 2013). Der kreative Kosmos. Heidelberg: Spektrum.Google Scholar
  14. Görnitz, T., & Görnitz, B. (2008, 2009). Die Evolution des Geistigen. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  15. Görnitz, B., & Görnitz, T. (2014). Das Geistige im Blickfeld der Naturwissenschaft—Bewusstsein und Materie als spezielle Formen der Quanteninformation. In J. Weinzirl & P. Heusser (Eds.), Was ist Geist (pp. 11–44). Königshausen & Neumann: Würzburg.Google Scholar
  16. Görnitz, T., Görnitz, B. (2016). Von der Quantenphysik zum Bewusstsein-Kosmos, Geist und Materie. Heidelberg: Springer.CrossRefGoogle Scholar
  17. Görnitz, T., Graudenz, D., Weizsäcker, C. F., & Weizsäcker, C. F. V. (1992). Quantum field theory of binary alternatives. International Journal of Theoretical Physics, 31, 1929–1959.Google Scholar
  18. Görnitz, T. & Schomäcker, U. (2012). Quantum particles from quantum information, Journal of Physics: Conference Series, 380, 012025. doi: 10.1088/1742-6596/380/1/012025.
  19. Görnitz, T., & Schomäcker, U. (2016). The structures of interactions—How to explain the gauge groups U(1), SU(2) and SU(3). Foundations of Science. doi: 10.1007/s10699-016-9507-6.Google Scholar
  20. Grossberg, St. (2013). Adaptive resonance theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1–47.CrossRefGoogle Scholar
  21. Günther, G. (1963). Das Bewußtsein der Maschinen-Eine Metaphysik der Kybernetik. Baden-Baden und Krefeld: Agis-Verlag.Google Scholar
  22. Hawking, St. (1988). Eine kurze Geschichte der Zeit, rororo, Rheinbeck, p77—Engl Original: A Brief History Of Time: From Big Bang To Black Holes, bantam books, New York.Google Scholar
  23. Hoffmann, G., & Hochapfel, S. O. (1987). Einführung in die Neurosenlehre und die psychosomatische Medizin. Stuttgart: Schattauer.Google Scholar
  24. Kiefer, C. (2014). Weizsäckers Zeitbegriff aus heutiger Sicht. Acta Historica Leopoldina, 63, 179.Google Scholar
  25. Koch, C. (2005). Bewusstsein—ein neurobiologisches Rätsel (p. 378). Heidelberg: Spektrum.CrossRefGoogle Scholar
  26. Koch, C. et al. (2013). Spektrum d Wissenschaften, H 3: 28 ff.Google Scholar
  27. Koch, C., & Greenfield, S. (2007). How does consciousness happen. Scientific American, 297(4), 76–83.CrossRefGoogle Scholar
  28. Mikulecky, D. C. (1999). Robert Rosen: The well posed question and its answer—Why are organisms different from machines? In Presented at the 43rd meeting of the International Society for the Systems Sciences. p. 6. [].
  29. Müller, F., & Kaupp, U. B. (1998). Signaltransduktion in Sehzellen. Naturwissenschaften, 85, 49–61.CrossRefGoogle Scholar
  30. OPD-1. (2001). Operationalisierte psychodynamische Diagnostik: Grundlagen und Manual. Huber, Bern: Arbeitskreis zur Operationalisierung Psychodynamischer Diagnostik.Google Scholar
  31. Pöppel, E. (2004). Lost in time: a historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64(295–301), 298.Google Scholar
  32. Pripram, K. (1975). Toward a holonomic theory of perception. In S. Ertel, L. Kemmler, & M. Stadler (Eds.), Gestalttheorie in der modernen Psychologie (pp. 161–184). Darmstadt: Steinkopff.CrossRefGoogle Scholar
  33. Roth, G. (2011). Geist und Bewusstsein als physikalische Zustände. In M. Dresler (Ed.), Kognitive Leistungen (p. 172). Spektrum Springer: Intelligenz und mentale Fähigkeiten im Spiegel der Neurowissenschaften, Heidelberg.Google Scholar
  34. Scheibe, E., Süßmann, G., Weizsäcker, C. F. v. (1958). Komplementarität und Logik III: Mehrfache Quantelung, Zeitschrift für Naturforschung 13a (9) pp. 705–721.Google Scholar
  35. Weizsäcker, C. F. v. (1955), Komplementarität und Logik, Die Naturwissenschaften 42 (19), pp. 521–529 & 42; (20) pp. 545–555.Google Scholar
  36. Weizsäcker, C. F. v. (1958). Die Quantentheorie der einfachen Alternative (Komplementarität und Logik II), Zeitschrift für Naturforschung 13a, pp. 245–253.Google Scholar
  37. Werner, E. (2010). Meaning in a quantum universe. Science, 329, 629.CrossRefGoogle Scholar
  38. Werner, E. (2011). Cancer networks, arXiv:1110.5865v1 [q-bio.MN] 26 Oct 2011.
  39. Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. Zurek (Ed.), Complexity, Entropy, and the Physics of Information. Addison-Wesley.Google Scholar
  40. Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. New York: MIT Press.Google Scholar
  41. Zeh, H. D. (2012). Physik ohne Realität: Tiefsinn oder Wahnsinn? Heidelberg, Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Fachbereich PhysikJ. W. Goethe-Universität Frankfurt/MainMunichGermany

Personalised recommendations