Skip to main content
Log in

Growth performance and plasma metabolites in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869) subjected to various feeding strategies at different sizes

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effect of various feeding strategies was evaluated on growth performance and biochemical parameters in two sizes of Siberian sturgeon (465.75 ± 11.18 and 250.40 ± 12 g) during 45 days. Fish were distributed into six experimental treatments including large fish with satiation feeding (LA), small fish with satiation feeding (SA), large fish with 50% satiation feeding (LR), small fish with 50% satiation feeding (SR), large starved fish (LS), and small starved fish (SS). Differences in final weight between LA and LR treatments were not noticeable, whereas SA and SR treatments showed significant differences. Growth parameters were more affected in small fish. In condition factor and weight gain in starved treatments, a considerable reduction occurred by interaction between feeding strategies and fish size, so the lowest values were obtained in SS treatment. Glucose levels significantly decreased in small fish during the starvation. Interaction between feeding strategy and fish size indicated the highest and lowest albumin level in SA and SS treatment, respectively. Cholesterol, triglyceride, total protein, and globulin showed no significant differences. It can be deduced that small fish are more sensitive to starvation than the large fish. Since glucose and albumin showed significant decrease in starved small fish, these parameters can help to monitor nutritional status and feeding practices. It was indicated that in both sizes of Siberian sturgeon, feeding 50% satiation reduced the food cost without negative impact on physiological condition, and it can be considered as an appropriate strategy to face unfavorable circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Tawwab M, Khattab YA, Ahmad MH, Shalaby AM (2006) Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile Tilapia, Oreochromis niloticus (L.). J Appl Aquac 18:17–36

    Article  Google Scholar 

  • Ali M, Nicieza A, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fish 4:147–190

    Article  Google Scholar 

  • Barcellos LJG, Marqueze A, Trapp M, Quevedo RM, Ferreira D (2010) The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture 300:231–236

    Article  CAS  Google Scholar 

  • Barham D, Trinder P (1972) An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145

    Article  PubMed  CAS  Google Scholar 

  • Biro PA, Morton AE, Post JR, Parkinson EA (2004) Overwinter lipid depletion and mortality of age-0 rainbow trout (Oncorhynchus mykiss). Can J Fish and Aquat Sci 61:1513–1519

    Article  CAS  Google Scholar 

  • Blasco J, Fernández J, Gutiérrez J (1992) Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. J Comp Physiol B 162:539–546

    Article  CAS  Google Scholar 

  • Caruso G, Maricchiolo G, Micale V, Genovese L, Caruso R, Denaro MG (2010) Physiological responses to starvation in the European eel (Anguilla anguilla): effects on haematological, biochemical, non-specific immune parameters and skin structures. Fish Physiol Biochem 36:71–83

    Article  PubMed  CAS  Google Scholar 

  • Caruso G, Denaro MG, Caruso R, Mancari F, Genovese L, Maricchiolo G (2011) Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar Environ Res 72:46–52

    Article  PubMed  CAS  Google Scholar 

  • Chatzifotis S, Papadaki M, Despoti S, Roufidou C, Antonopoulou E (2011) Effect of starvation and re-feeding on reproductive indices, body weight, plasma metabolites and oxidative enzymes of sea bass (Dicentrarchus labrax). Aquaculture 316:53–59

    Article  CAS  Google Scholar 

  • Chebanov M, Billard R (2001) The culture of sturgeons in Russia: production of juveniles for stocking and meat for human consumption. Aquat Living Resour 14:375–381

    Article  Google Scholar 

  • Costas B, Aragão C, Ruiz-Jarabo I, Vargas-Chacoff L, Arjona FJ, Dinis MT, Conceição LE (2011) Feed deprivation in Senegalese sole (Solea senegalensis Kaup, 1858) juveniles: effects on blood plasma metabolites and free amino acid levels. Fish Physiol Biochem 37:495–504

    Article  PubMed  CAS  Google Scholar 

  • Davis KB, Gaylord TG (2011) Effect of fasting on body composition and responses to stress in sunshine bass. Comp Biochem Physiol A 158:30–36

    Article  CAS  Google Scholar 

  • De Pedro N, Delgado MJ, Gancedo B, Alonso-Bedate M (2003) Changes in glucose, glycogen, thyroid activity and hypothalamic catecholamines in tench by starvation and refeeding. J Comp Physiol B 173:475–481

    Article  PubMed  CAS  Google Scholar 

  • Echevarría G, Martínez-Bebiá M, Zamora S (1997) Evolution of biometric indices and plasma metabolites during prolonged starvation in European sea bass (Dicentrarchus labrax, L.). Comp Biochem Physiol A 118:111–123

    Article  Google Scholar 

  • Eslamloo K, Morshedi V, Azodi M, Akhavan SR (2016) Effect of starvation on some immunological and biochemical parameters in tinfoil barb (Barbonymus schwanenfeldii). J Appl Anim Res 45:173–178

    Article  CAS  Google Scholar 

  • Falahatkar B (2012) The metabolic effects of feeding and fasting in beluga Huso huso. Mar Environ Res 82:69–75

    Article  PubMed  CAS  Google Scholar 

  • Foster GD, Moon TW (1991) Hypometabolism with fasting in the yellow perch (Perca flavescens): a study of enzymes, hepatocyte metabolism, and tissue size. Physiol Zool 64:259–275

    Article  CAS  Google Scholar 

  • Fox BK, Breves JP, Davis LK, Pierce AL, Hirano T, Grau EG (2010) Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia. Gen Comp Endocrinol 166:573–580

    Article  PubMed  CAS  Google Scholar 

  • Furné M, Morales AE, Trenzado CE, García-Gallego M, Hidalgo MC, Domezain A, Sanz A (2012) The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J Comp Physiol B 182:63–76

    Article  PubMed  CAS  Google Scholar 

  • Gaylord IG, Gatlin DM (2000) Assessment of compensatory growth in channel catfish Ictalurus punctatus R. and associated changes in body condition indices. J World Aquacult Soc 31:326–336

    Article  Google Scholar 

  • Ghiasi S, Falahatkar B, Dabrowski K, Abasalizadeh A, Arslan M (2014) Effect of thiamine injection on growth performance, hematology and germinal vesicle migration in Sterlet sturgeon Acipenser ruthenus L. Aquac Int 22:1563–1576

    Article  CAS  Google Scholar 

  • Gillanders BM, Elsdon TS, Halliday IA, Jenkins GP, Robins JB, Valesini FJ (2011) Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Mar Freshw Res 62:1115–1131

    Article  Google Scholar 

  • Gillis TE, Ballantyne JS (1996) The effects of starvation on plasma free amino acid and glucose concentrations in lake sturgeon. J Fish Biol 49:1306–1316

    Article  CAS  Google Scholar 

  • Gisbert E, Williot P (2002) Advances in the larval rearing of Siberian sturgeon. J Fish Biol 60:1071–1092

    Article  Google Scholar 

  • Goddard S (1996) Feeding management in intensive aquaculture. Chapman and Hall, New York

    Book  Google Scholar 

  • Heim KC, Wipfli MS, Whitman MS, Seitz AC (2016) Body size and condition influence migration timing of juvenile Arctic grayling. Ecol Freshw Fish 25:156–166

    Article  Google Scholar 

  • Hevrøy EM, Azpeleta C, Shimizu M, Lanzén A, Kaiya H, Espe M, Olsvik PA (2011) Effects of short-term starvation on ghrelin, GH-IGF system, and IGF binding proteins in Atlantic salmon. Fish Physiol Biochem 37:217–232

    Article  PubMed  CAS  Google Scholar 

  • Hoseini SM, Yousefi M, Rajabiesterabadi H, Paktinat M (2014) Effect of short-term (0–72 h) fasting on serum biochemical characteristics in rainbow trout Oncorhynchus mykiss. J Appl Ichthyol 30:569–573

    Article  CAS  Google Scholar 

  • Hung SS, Liu W, Li H, Storebakken T, Cui Y (1997) Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus. Aquaculture 151:357–363

    Article  Google Scholar 

  • Johanson AM, Rohlfs EM, Silverman LM (1999) Proteins. In: Burtis CA, Ashwood ER (eds) Tietz Txtbook of Cinical Cemistry. 3rd edn. Saunders company, Philadelphia, pp 477–540

    Google Scholar 

  • Kim MK, Lovell RT (1995) Effect of restricted feeding regimes on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture 135:285–293

    Article  Google Scholar 

  • Knowles S, Hrubec TC, Smith SA, Bakal RS (2006) Hematology and plasma chemistry reference intervals for cultured shortnose sturgeon (Acipenser brevirostrum). Vet Clin Pathol 35:434–440

    Article  PubMed  Google Scholar 

  • Köksal G, Rad F, Kindir M (2000) Growth performance and feed conversion efficiency of Siberian sturgeon juveniles (Acipenser baerii) reared in concrete raceway. Turk J Vet Anim Sci 24:435–442

    Google Scholar 

  • Kumar S, Sahu NP, Pal AK, Choudhury D, Yengkokpam S, Mukherjee SC (2005) Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol 19:331–334

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Wei QW, Wen H, Jiang M, Wu F, Shi Y (2011) Compensatory growth in juvenile Chinese sturgeon (Acipenser sinensis): effects of starvation and subsequent feeding on growth and body composition. J Appl Ichthyol 27:749–754

    Article  CAS  Google Scholar 

  • Love RM (1980) The chemical biology of fishes. Vol 2. Academic Press, London and New York

    Google Scholar 

  • Lovell T (1998) Nutrition and feeding of fish. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Machado CR, Garofaloj MAR, Roselino JES, Kettelhut IC, Migliorini RH (1988) Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet. Gen Comp Endocrinol 71:429–437

    Article  PubMed  CAS  Google Scholar 

  • McCarthy ID, Carter CG, Houlihan DF (1992) The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Biol 41:257–263

    Article  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

  • McClelland GB (2011) Cellular Respiration. In: Farrell AP, Cech JJ, Richards JG, Stevens ED (eds). Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press. New York, pp 951–959

  • Moon TW, Foster GD (1995) Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Hochachka PW, Mommsen TP (eds) Biochemistry and Molecular Biology of Fishes, vol 4. Elsevier, Amsterdam, pp 65–100

    Google Scholar 

  • Navarro I, Gutiérrez J (1995) Fasting and starvation. In: Hochachka PW, Mommsen TP (eds) Biochemistry and Mlecular Bology of Fshes, vol 4. Elsevier, Amsterdam, pp 393–434

    Google Scholar 

  • Paloheimo JE, Dickie LM (1966) Food and growth in fish II: effects of food and temperature on the relation between metabolism and body weight. J Fish Res Board Can 23:869–908

    Article  Google Scholar 

  • Peres H, Santos S, Oliva-Teles A (2013) Selected plasma biochemistry parameters in gilthead seabream (Sparus aurata) juveniles. J Appl Ichthyol 29:630–636

    Article  CAS  Google Scholar 

  • Peres H, Santos S, Oliva-Teles A (2014) Blood chemistry profile as indicator of nutritional status in European seabass (Dicentrarchus labrax). Fish Physiol Biochem 40:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Jiménez A, Guedes MJ, Morales AE, Oliva-Teles A (2007) Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture 265:325–335

    Article  CAS  Google Scholar 

  • Polakof S, Ceinos RM, Fernández-Durán B, Míguez JM, Soengas JL (2007) Daily changes in parameters of energy metabolism in brain of rainbow trout: dependence on feeding. Comp Biochem Physiol A 146:265–273

    Article  CAS  Google Scholar 

  • Pottinger TG, Rand-Weaver M, Sumpter JP (2003) Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilisation. Comp Biochem Physiol B 136:403–417

    Article  PubMed  CAS  Google Scholar 

  • Power DM, Melo J, Santos CRA (2000) The effect of food deprivation and refeeding on the liver, thyroid hormones and transthyretin in sea bream. J Fish Biol 56:374–387

    Article  CAS  Google Scholar 

  • Řehulka J, Minarik B, Adamec V, Rehulkova E (2005) Investigations of physiological and pathological levels of total plasma protein in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res 36:22–32

    Article  CAS  Google Scholar 

  • Rifai N, Bachorik PS, Albers JJ (1999) Lipids, lipoproteins and apolipoproteins. In: Burtis CA, Ashwood ER (eds) Tietz textbook of clinical chemistry, 3rd edn. Saunders Company, Philadelphia, pp 809–861

    Google Scholar 

  • Shimeno S, Shikata T, Hosokawa H, Masumoto T, Kheyyali D (1997) Metabolic response to feeding rates in common carp, Cyprinus carpio. Aquaculture 151:371–377

    Article  CAS  Google Scholar 

  • Steffens W, Jähnichen H, Fredrich F (1990) Possibilities of sturgeon culture in Central Europe. Aquaculture 89:101–122

    Article  Google Scholar 

  • Stepanowska K, Nedzarek A, Rakusa-Suszczewski S (2006) Effects of starvation on the biochemical composition of blood and body tissue in the Antarctic fish Notothenia coriiceps (Richardson, 1844) and excreted metabolic products. Polar Biol 20:46–54

    CAS  Google Scholar 

  • Taborsky M, Grantner A (1998) Behavioural time-energy budgets of cooperatively breeding Neolamprologus pulcher (Pisces: Cichlidae). Anim Behav 56:1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Talbot C, Corneillie S, Korsøen Ø (1999) Pattern of feed intake in four species of fish under commercial farming conditions: implications for feeding management. Aquac Res 30:509–518

    Article  Google Scholar 

  • Tian X, Fang J, Dong S (2010) Effects of starvation and recovery on the growth, metabolism and energy budget of juvenile tongue sole (Cynoglossus semilaevis). Aquaculture 310:122–129

    Article  Google Scholar 

  • Wang Y, Cui Y, Yang YX, Cai FS (2000) Compensatory growth in hybrid tilapia, Oreochromis mossambicus and O. niloticus, reared in seawater. Aquaculture 189:101–108

    Article  Google Scholar 

  • Weatherley AH, Gill HS (1981) Recovery growth following periods of restricted rations and starvation in rainbow trout Salmo gairdneri. J Fish Biol 18:195–208

    Article  Google Scholar 

  • Wood AW, Duan C, Bern HA (2005) Insulin-like growth factor signaling in fish. Int Rev Cytol 243:215–285

    Article  PubMed  CAS  Google Scholar 

  • Yarmohammadi M, Shabani A, Pourkazemi M, Soltanloo H, Imanpour MR (2012) Effect of starvation and re-feeding on growth performance and content of plasma lipids, glucose and insulin in cultured juvenile Persian sturgeon (Acipenser persicus Borodin, 1897). J Appl Ichthyol 28:692–696

    Article  CAS  Google Scholar 

  • Yılmaz HA, Eroldogan OT (2011) Combined effects of cycled starvation and feeding frequency on growth and oxygen consumption of gilthead sea bream, Sparus aurata. J World Aquac Soc 42:522–529

    Article  Google Scholar 

  • Yokoyama H, Takashi T, Ishihi Y, Abo K (2009) Effects of restricted feeding on growth of red sea bream and sedimentation of aquaculture wastes. Aquaculture 286:80–88

    Article  Google Scholar 

  • Zammit VA, Newsholme EA (1979) Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem J 184:313–322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Gratitude is given to the hatchery and rearing complex and biology laboratory authorities in the Faculty of Natural Resources, University of Guilan, for offering the laboratory and rearing instruments. We also thank Hamed Abdollahpour, Erfan Akbari Nargesi, Sakineh Ebrahimi, and Razieh Nazari that contributed to advance this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Falahatkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, N., Falahatkar, B. & Sajjadi, M.M. Growth performance and plasma metabolites in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869) subjected to various feeding strategies at different sizes. Fish Physiol Biochem 44, 1363–1374 (2018). https://doi.org/10.1007/s10695-018-0527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0527-8

Keywords

Navigation