Skip to main content
Log in

Ontogeny and kinetics of carnitine palmitoyltransferase I in hepatopancreas and skeletal muscle of grass carp (Ctenopharyngodon idella)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The ontogeny and kinetics of carnitine palmitoyltransferase I (CPT I) were investigated in hepatopancreas and muscle throughout four developmental stages (newly hatched larvae, 1-month-old juvenile, 3-month-old, and 6-month-old, respectively) of grass carp Ctenopharyngodon idella. In hepatopancreas, the maximal velocity (V max) significantly increased from hatching to 1-month-old grass carp and then gradually declined at 6-month-old grass carp. In muscle, CPT I activity was the highest at 1-month-old grass carp, nearly twofold higher than that at hatching (P < 0.05). The Michaelis constant (K m) value was also the highest for 1-month-old in both tested tissues. Carnitine concentrations (FC, AC and TC) were the lowest for 3-month-old grass carp and remained relatively constant in both tissues from fish under the other developmental stages. The FC concentration in hepatopancreas and muscle at four developmental stages were less than the respective K m, indicating that grass carp required supplemental carnitine in their food to ensure that CPT I activity was not constrained by carnitine availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AC:

Acyl carnitine

TC:

Total carnitine

FC:

Free carnitine

ANOVA:

One-way analysis of variance

CPT:

Carnitine palmitoyltransferase

DTNB:

5, 5′-dithio-bis-(2-nitrobenzoic acid)

K m :

Michaelis–Menten constants

MS 222:

Tricaine methanesulfonate

SEM:

Standard error of mean

V max :

Maximal reaction velocity

References

  • Alhomida AS, Duhaiman AS, Al-Jafari AA, Junaid MA (1995) Determination of l-carnitine, acylcarnitine and total carnitine levels in plasma and tissue of camel (Camelus dromedarius). Comp Biochem Phys B 111:441–445

    Article  CAS  Google Scholar 

  • Bieber L, Fiol C (1986) Purification and assay of carnitine acyltransferases. Method Enzymol 123:276–284

    Article  CAS  Google Scholar 

  • Bieber L, Markwell M, Blair M, Helmrath T (1973) Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in liver mitochondria of neonatal pigs. Biochim Biophys Acta 326:145–154

    Article  CAS  PubMed  Google Scholar 

  • Bohles H, Evangeliou A, Bervoets K, Eckert I, Sewell A (1994) Carnitine esters in metabolic disease. Eur J Pediatr 153:57–61

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bremer J (1983) Carnitine-metabolism and functions. Physiol Rev 63:1420–1480

    CAS  PubMed  Google Scholar 

  • Brown NF, Mullur RS, Subramanian I, Esser V, Bennett MJ, Saudubray JM, Feigenbaum AS, Kobari JA, Macleod PM, McGarry JD, Cohen JC (2001) Molecular characterization of L-CPT I deficiency in six patients: insights into function of the native enzyme. J Lipid Res 42:1134–1142

    CAS  PubMed  Google Scholar 

  • Chatzifotis S, Takeuchi T (1997) Effect of supplemental carnitine on body weight loss, proximate and lipid compositions and carnitine content of red sea bream (Pagrus major) during starvation. Aquaculture 158:129–140

    Article  CAS  Google Scholar 

  • Du ZY, Clouet P, Huang LM, Degrace P, Zheng WH, He JG, Tian LX, Liu YJ (2008) Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation. Aquac Nutr 14:77–92

    Article  CAS  Google Scholar 

  • FAO (2012) The state of world fisheries and aquaculture 2012. Rome

  • Frøyland L, Madsen L, Eckhoff KM, Øyvind Lie, Berge RK (1998) Carnitine palmitoyltransferase I, carnitine palmitoyltransferase II, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar). Lipids 33:923–930

    Article  PubMed  Google Scholar 

  • Girard J, Duee PH, Ferre P, Pegorier JP, Escriva F, Decaux JF (1985) Fatty acid oxidation and ketogenesis during development. Reprod Nutr Dev 25:303–319

    Article  CAS  PubMed  Google Scholar 

  • Girard J, Ferre P, Pegorier JP, Duee PH (1992) Adaptations of glucose and fatty acid metabolism during perinatal period and suckling–weaning transition. Physiol Rev 72:507–562

    CAS  PubMed  Google Scholar 

  • Hamdan M, Urien S, Le Louet H, Tillement JP (2001) Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176. Pharmacol Res 44:99–104

    Article  CAS  PubMed  Google Scholar 

  • Heo K, Odle J, Han IK, Cho W, Seo S, van Heugten E, Pilkington DH (2000) DietaryL-carnitine improves nitrogen utilization in growing pigs fed low energy, fat-containing diets. J Nutr 130:1809–1814

    CAS  PubMed  Google Scholar 

  • Herbin C, Pegorier JP, Duee PH, Kohl C, Girard J (2005) Regulation of fatty acid oxidation in isolated hepatocytes and liver mitochondria from newborn rabbits. Eur J Biochem 165:201–207

    Article  Google Scholar 

  • Hofstee B (1952) On the evaluation of the constants Vm and KM in enzyme reactions. Science 116:329–331

    Article  CAS  PubMed  Google Scholar 

  • Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Odle J (1995) Regulation of fatty acid oxidation by hepatic mitochondria from neonatal pigs via carnitine palmitoyltransferase I. J Anim Sci 73(Suppl 1):77

    Google Scholar 

  • Lin X, Odle J (2003) Changes in kinetics of carnitine palmitoyltransferase in liver and skeletal muscle of dogs (Canis familiaris) throughout growth and development. J Nutr 133:1113–1119

    CAS  PubMed  Google Scholar 

  • Lin X, House R, Odle J (2005) Ontogeny and kinetics of carnitine palmitoyltransferase in liver and skeletal muscle of the domestic felid (Felis domestica). J Nutr Biochem 16:331–338

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu CX, Luo Z, Hu W, Tan XY, Zheng JL, Chen QL, Zhu QL (2014) Kinetics of carnitine palmitoyltransferase I (CPT I) in Chinese sucker (Myxocyprinus asiaticus) change with its development. Lipids 49:173–181

    Article  CAS  PubMed  Google Scholar 

  • Long CS, Haller RG, Foster DW, McGarry JD (1982) Kinetics of carnitine-dependent fatty acid oxidation Implications for human carnitine deficiency. Neurology 32:663

    Article  CAS  PubMed  Google Scholar 

  • McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system-from concept to molecular analysis. Eur J Biochem 244:1–14

    Article  CAS  PubMed  Google Scholar 

  • McGarry J, Mills S, Long C, Foster D (1983) Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues: demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J 214:21–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morash AJ, Kajimura M, McClelland GB (2008) Intertissue regulation of carnitine palmitoyltransferase I (CPTI): mitochondrial membrane properties and gene expression in rainbow trout (Oncorhynchus mykiss). Biochim Biophys Acta 1778:1382–1389

    Article  CAS  PubMed  Google Scholar 

  • Morash AJ, Bureau DP, McClelland GB (2009) Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 152B:85–93

    Article  CAS  Google Scholar 

  • Morash AJ, Le Moine CMR, McClelland GB (2010) Genome duplication events have led to a diversification in the CPT I gene family in fish. Am J Physiol Regul Integr Comp Physiol 299:579–589

    Article  Google Scholar 

  • Nakano C, Takashima S, Takeshita K (1989) Carnitine concentration during the development of human tissues. Early Hum Dev 19:21–27

    Article  CAS  PubMed  Google Scholar 

  • Pande SV, Parvin R (1980) Carnitine–acylcarnitine translocase catalyzes an equilibrating unidirectional transport as well. J Biol Chem 255:2994–3001

    CAS  PubMed  Google Scholar 

  • Peffer PL, Lin X, Jacobi SK, Gatlin LA, Woodworth J, Odle J (2007) Ontogeny of carnitine palmitoyltransferase I activity, carnitine-Km, and mRNA abundance in pigs throughout growth and development. J Nutr 137:898–903

    CAS  Google Scholar 

  • Peñas M, Benito M (1986) Regulation of carnitine palmitoyltransferase activity in the liver and brown adipose tissue in the newborn rat: effect of starvation and hypothermia. Biochem Biophys Res Commun 135:589–596

    Article  PubMed  Google Scholar 

  • Price NT, van der Leij FR, Jackson VN, Corstorphinea CG, Thomsona R, Sorensena A, Zammita VA (2002) A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics 80:433–442

    Article  CAS  PubMed  Google Scholar 

  • Tan XY, Luo Z, Zeng Q, Zhao YH, Liu X (2013) trans-10, cis-12 Conjugated linoleic acid improved growth performance, reduced lipid deposition and influenced CPT I kinetic constants of juvenile Synechogobius hasta. Lipids 48:505–512

    Article  CAS  PubMed  Google Scholar 

  • Weis BC, Esser V, Foster DW, McGarry JD (1994) Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I: the minor component is identical to the liver enzyme. J Biol Chem 269:18712–18715

    CAS  PubMed  Google Scholar 

  • Xia LJ, Folkers K (1991) Improved methodology to assay carnitine and levels of free and total carnitine in human plasma. Biochem Biophys Res Commun 176:1617–1623

    Article  CAS  PubMed  Google Scholar 

  • Zammit VA, Fraser F, Orstorphine CG (1997) Regulation of mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I): role of membrane-topology. Adv Enzyme Regul 37:295–317

    Article  CAS  PubMed  Google Scholar 

  • Zheng JL, Hu W, Luo Z, Zhao YH, Zhu QL, LI XD (2013a) Comparative study on the kinetic behaviour of carnitine palmitoyltransferase I between Javelin goby Synechogobius hasta (carnivorous) and grass carp Ctenopharyngodon idella (herbivorous). Aquac Nutr 19:665–676

    Article  CAS  Google Scholar 

  • Zheng JL, Luo Z, Zhu QL, Chen QL, Gong Y (2013b) Molecular characterization, tissue distribution and kinetic analysis of carnitine palmitoyltransferase I in juvenile yellow catfish Pelteobagrus fulvidraco. Genomics 101:195–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by ‘973’ project, China (Grant No. 2009CB118706), and the Special Fund for Agro-Scientific Research in the Public Interest of China (Grant No. 201003020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Luo, Z., Mai, KS. et al. Ontogeny and kinetics of carnitine palmitoyltransferase I in hepatopancreas and skeletal muscle of grass carp (Ctenopharyngodon idella). Fish Physiol Biochem 41, 1393–1401 (2015). https://doi.org/10.1007/s10695-015-0094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0094-1

Keywords

Navigation