Skip to main content
Log in

cDNA structure and the effect of fasting on myostatin expression in walking catfish (Clarias macrocephalus, Günther 1864)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We cloned and sequenced the myostatin (MSTN) gene of walking catfish and characterized its expression under different conditions. The full cDNA sequence of MSTN was 1,784 bp, containing an open reading frame of 1,191 bp, which encoded 396 amino acids. The deduced MSTN sequence contained functional sites similar to other members of TGF-β superfamily, including the proteolytic processing site and nine conserved cysteines in the C-terminal. Walking catfish MSTN mRNA was strongly expressed in skeletal muscle and brain tissues, consistent with the expression profiles of MSTN-1 isoform in other teleosts. Temporal expression analysis revealed that the MSTN was expressed at the highest levels in 1-week-old larvae and adults, but was lowest in early juveniles. A fasting–re-feeding experiment was used to evaluate the effects of starvation on growth and MSTN expression in juvenile walking catfish for 28 days. MSTN transcript levels increased significantly (threefold) after 7 days of fasting (P < 0.05) compared with the fed control. Subsequently, MSTN expression levels decreased 1.6-fold when fasting was extended to 14 days. Although re-feeding decreased the MSTN expression relative to the levels of the fed control, the period was not long enough for growth recovery of the juveniles. Our results supported a role of MSTN as a negative regulator of muscle growth and, possibly, a role in energy conservation in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 42(W1):W252–W258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biga PR, Roberts SB, Lliev DB, McCauley LAR, Moon JS, Collodi P, Goetz FW (2005) The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio. Comp Biochem Physiol B 141:218–230

    Article  PubMed  Google Scholar 

  • Cash JN, Rejon CA, McPherron AC, Bernard DJ, Thompson TB (2009) The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding. EMBO J 28:2662–2676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chauvigné F, Gabillard JC, Weil C, Rescan PY (2003) Effect of refeeding on IGF1, IGF2, IGF receptors, FGF2, FGF6 and myostatin mRNA expression in rainbow trout (Oncorhynchus mykiss) myotomal muscle. Gen Comp Endocrinol 132:209–215

    Article  PubMed  Google Scholar 

  • de la Serrana DG, Codina M, Capilla E, Jiménez-Amilbura V, Navarro I, Du SJ, Johnston IA, Gutiérrez J (2014) Characterisation and expression of myogenesis regulatory factors during in vitro myoblast development and in vivo fasting in the gilthead sea bream (Sparus aurata). Comp Biochem Physiol A 167:90–99

    Article  Google Scholar 

  • De Santis C, Jerry DR (2011) Differential tissue-regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting: evidence for functional differentiation. Mol Cell Endocrinol 335:158–165

    Article  PubMed  Google Scholar 

  • Delgado I, Fuentes E, Escobar S, Navarro C, Corbeaux T, Reyes AE, Vera MI, Álvarez M, Molina A (2008) Temporal and spatial expression pattern of the myostatin gene during larval and juvenile stages of the Chilean flounder (Paralichthys adspersus). Comp Biochem Physiol B 151:197–202

    Article  PubMed  Google Scholar 

  • Funkenstein B, Balas V, Rebhan Y, Pliatner A (2009) Characterization and functional analysis of the 5′ flanking region of Sparus aurata myostatin-1 gene. Comp Biochem Physiol A 153:55–62

    Article  Google Scholar 

  • Gabillard JC, Biga PR, Rescan PY, Seiliez I (2013) Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 194:45–54

    Article  CAS  PubMed  Google Scholar 

  • Garikipati DK, Gahr SA, Roalson EH, Rodgers BD (2007) Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): genomic organization, differential expression, and pseudogenization. Endocrinology 148:2106–2115

    Article  CAS  PubMed  Google Scholar 

  • Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  CAS  PubMed  Google Scholar 

  • Helterline DL, Garikipati D, Stenkamp DL, Rodgers BD (2007) Embryonic and tissue-specific regulation of myostatin-1and -2 gene expression in zebrafish. Gen Comp Endocrinol 151:90–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Z, Chen X, Chen D (2011) Myostatin: a novel insight into its role in metabolism, signal pathways and expression regulation. Cell Signal 23:1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177:99–115

    Article  Google Scholar 

  • Johnston IA, Bower NE, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617–1628

    Article  CAS  PubMed  Google Scholar 

  • Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF 8) in double-muscled Belgian blue and Piedmontese cattle. Genome Res 7:910–916

    CAS  PubMed  Google Scholar 

  • Ko CF, Chiou TT, Chen TT, Wu JL, Chen JC, Lu JK (2006) Molecular cloning of myostatin gene and characterization of tissue-specific and developmental stage-specific expression of the gene in orange spotted grouper Epinephelus coioides. Mar Biotechnol 9:20–32

    Article  PubMed  Google Scholar 

  • Kocabas AM, Kuseyin H, Dunham RA, Liu Z (2002) Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochim Biophys Acta 1575:99–107

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Liu L, Yu X, Tong J (2012) Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Mol Biol Rep 39:9211–9221

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maccatrozzo L, Bargelloni L, Radaelli G, Mascarello F, Patarnello T (2001) Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar Biotechnol 3:224–230

    Article  CAS  PubMed  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Article  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Nat Acad Sci USA 94:12457–12461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Myer BM, Froehlich JM, Galt NJ, Biga PR (2013) Inbred strains of zebrafish exhibit variation in growth performance and myostatin expression following fasting. Comp Biochem Physiol A 164:1–9

    Article  Google Scholar 

  • Nadjar-Boger E, Maccatrozzo L, Radaelli G, Funkenstein B (2013) Genomic cloning and promoter functional analysis of myostatin-2 in shi drum, Umbria cirrosa: conservation of muscle-specific promoter activity. Comp Biochem Physiol B 164:99–110

    Article  CAS  PubMed  Google Scholar 

  • Østbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen Ø (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268:5249–5257

    Article  PubMed  Google Scholar 

  • Østbye TK, Wetten OF, Tooming-Klunderud A, Jakobsen KS, Yafe A, Etzioni S, Moen T, Andersen Ø (2007) Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and -2. Gene 403:159–169

    Article  PubMed  Google Scholar 

  • Poompuang S, Panprommin D (2010) Expression of four muscle proteins at different growth stages of Günther’s walking catfish Clarias macrocephalus. Aquacul Res 41:e144–e154. doi:10.1111/j.1365-2109.2010.02487.x

    Article  CAS  Google Scholar 

  • Rescan PY, Jutel I, Ralliere C (2001) Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J Exp Biol 204:3523–3529

    CAS  PubMed  Google Scholar 

  • Roberts SB, Goetz FW (2001) Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett 491:212–216

    Article  CAS  PubMed  Google Scholar 

  • Rodgers BD, Weber GM, Sullivan CV, Levine MA (2001) Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology 142:1412–1418

    CAS  PubMed  Google Scholar 

  • Rodgers BD, Weber GM, Kelley KM, Levine MA (2003) Prolonged fasting and cortisol reduce myostatin mRNA levels in tilapia larvae; short term fasting elevates. Am J Physiol Regul Integr Comp Physiol 284:R1277–R1286

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA (2011) Latent TGF-[bgr] structure and activation. Nature 474(7351):343–349

    Article  CAS  PubMed  Google Scholar 

  • Terova G, Bernardini G, Binelli G, Gornati R, Saroglia M (2006) cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels. Domest Anim Endocrinol 30:304–319

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian X, Fang J, Dong S (2010) Effects of starvation and recovery on the growth, metabolism and energy budget of juvenile tongue sole (Cynoglossus semilaevis). Aquaculture 310:122–129

    Article  Google Scholar 

  • Weber TE, Bosworth BG (2005) Effects of 28 day exposure to cold temperature and feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture 246:483–492

    Article  CAS  Google Scholar 

  • Xu C, Wu G, Zohar Y, Du SJ (2003) Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol 206:4067–4079

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Peng K, Liu X, Zhao D, Duan J, Hu W, Zhao H (2012) Effects of sex steroids on expression of myostatin in rare minnow, Gobiocypris rarus. Aquaculture 350–353:1–7

    Article  Google Scholar 

  • Zhong Q, Zhang Q, Chen Y, Sun Y, Qi J, Wang Z, Li S, Li C, Lan X (2008) The isolation and characterization of myostatin gene in Japanese flounder (Paralichthys olivaceus): ubiquitous tissue expression and developmental specific regulation. Aquaculture 280:247–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE) and the Thailand Research Fund (Grant no. RMU5180015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supawadee Poompuang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjanaworakul, P., Srisapoome, P., Sawatdichaikul, O. et al. cDNA structure and the effect of fasting on myostatin expression in walking catfish (Clarias macrocephalus, Günther 1864). Fish Physiol Biochem 41, 177–191 (2015). https://doi.org/10.1007/s10695-014-0015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-0015-8

Keywords

Navigation