Skip to main content
Log in

Initial Fuel Temperature Effects on Flame Spread over Aviation Kerosene in Low- and High-Altitude Environments

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Long-distance petroleum or oil pipelines and aircraft taking off and landing cover a wide range of altitudes in practice. An increase in altitude leads to a decline in atmosphere pressure, as well as a decrease of the partial pressure of oxygen, which may influence the burning behavior of liquid fuels involved in accidental spills. In order to gain understanding on the hazards of spills from aircraft tanks or oil transport networks, experimental work was conducted in Hefei (50 m) and Lhasa (3,650 m) to investigate the effect of initial fuel temperature on flame spread over aviation kerosene both in low- and high-altitude environments. Data shows that flame spread is faster as the initial temperature increases. The transition from liquid-phase to gas-phase-controlled flame spread occurred at the initial fuel temperature of 65°C in Lhasa, but 82.5°C in Hefei. Moreover, for the same initial fuel temperature and under the regime controlled by liquid-phase transport, the rate of flame spread and temperature rise at low altitudes were smaller than those at higher altitudes, while the subsurface convection length and preheating time were larger. Direct evidence was also obtained to show the flame at both altitudes propagated in a pulsating forward-back-forward manner, whereas the average flame pulsation wavelength and frequency at the high altitude were larger than at the low altitude. Theoretical analyse predicts that an increase in initial fuel temperature or altitude led to an increase in fuel evaporation rate, which enhances flame spread and causes unsteady behavior. Given the difference in flame speed, fire accidents at high altitude are potentially more hazardous than those at low-altitude environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nagase K, Funatsu K (1990) A study of a fire on a diesel railcar. Fire Technol 26(4):290–309. doi:10.1007/bf01293075

    Article  Google Scholar 

  2. Glassman I, Dryer FL (1981) Flame spreading across liquid fuels. Fire Saf J 3(2):123–138. doi:10.1016/0379-7112(81)90038-2

    Article  Google Scholar 

  3. Akita K (1973) Some problems of flame spread along a liquid surface. Proc Combust Inst 14(1):1075–1083. doi:10.1016/s0082-0784(73)80097-9

    Article  Google Scholar 

  4. Degroote E (2007) Control parameters of flame spreading in a fuel container. J Therm Anal Calorim 87(1):149–151. doi:10.1007/s10973-006-7838-1

    Article  Google Scholar 

  5. Cai J, Liu F, Sirignano WA (2003) Three-dimensional structures of flames over liquid fuel pools. Combust Sci Technol 175(11):2113–2139. doi:10.1080/714923188

    Article  Google Scholar 

  6. Takahashi K, Kodaira Y, Kudo Y, Ito A, Saito K (2007) Effect of oxygen on flame spread over liquids. Proc Combust Inst 31:2625–2631. doi:10.1016/j.proci.2006.07.196

    Article  Google Scholar 

  7. Burelbach JP, Epstein M, Plys MG (1998) Initiation of flame spreading on shallow subflash fuel layers. Combust Flame 114(1–2):280–282. doi:10.1016/s0010-2180(97)00290-3

    Article  Google Scholar 

  8. Elam SK, Altenkirch RA, Saito K (1990) Design of a radiant “Strip” heater for simulating liquid fuel flows in flame spreading. Fire Technol 26(2):156–168. doi:10.1007/bf01040180

    Article  Google Scholar 

  9. Degroote E (2006) Fire safety on fuel containers. J Therm Anal Calorim 84(1):67–70. doi:10.1007/s10973-005-7174-x

    Article  Google Scholar 

  10. Degroote E, Ybarra PLG (2005) Flame propagation over liquid alcohols: Part III. Pulsating regime. J Therm Anal Calorim 80(3):555–558. doi:10.1007/s10973-005-0693-7

    Article  Google Scholar 

  11. Degroote E, Garcia-Ybarra PL (2000) Flame spreading over liquid ethanol. Eur Phys J B 13(2):381–386. doi:10.1007/s100510050045

    Article  Google Scholar 

  12. Patej S, Plourde F, Kim SD, Hennequin D (2002) Vortex structure in a liquid film in the pulsating flame spread regime. Eur Phys J B 140:131–140. doi:10.1051/epjap

    Google Scholar 

  13. Higuera FJ (2002) Liquid-fuel thermocapillary flow induced by a spreading flame. J Fluid Mech 473:349–377. doi:10.1017/S0022112002002471

    Article  MATH  MathSciNet  Google Scholar 

  14. White D, Beyler CL, Fulper C, Leonard J (1997) Flame spread on aviation fuels. Fire Saf J 28(1):1–31. doi:10.1016/s0379-7112(96)00070-7

    Article  Google Scholar 

  15. Guo J, Lu S, Zhou J, Wang C (2011) Effect of initial temperature on flame spread over aviation kerosene. J Combust Sci Tech 17(2):165–169

    Google Scholar 

  16. Zhou J, Chen G, Li P, Chen B, Wang C, Lu S (2010) Analysis of flame spread over aviation kerosene. Chin Sci Bull 55(17):1822–1827. doi:10.1007/s11434-010-3014-x

    Article  Google Scholar 

  17. Konishi T, Tashtoush G, Ito A, Narumi A, Saito K (2000) The effect of a cold temperature valley on pulsating flame spread over propanol. Proc Combust Inst 28:2819–2826. doi:10.1016/S0082-0784(00)80704-3

    Article  Google Scholar 

  18. Ross HD, Miller FJ (1998) Flame spread across liquid pools with very low-speed opposed or concurrent airflow. Proc Combust Inst 27:2723–2729. doi: 10.1016/S0082-0784(98)80128-8

    Article  Google Scholar 

  19. Guo J, Lu S, Wang C (2013) Study on the subsurface flow induced by flame spread over aviation kerosene. J Therm Anal Calorim. doi:10.1007/s10973-013-3547-8

  20. Wark K (1988) Generalized thermodynamic relationships, thermodynamics, 5th edn. McGraw-Hill, Inc., New York

    Google Scholar 

  21. Zhu F, Li K (2011) Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire. Fire Technol 47(3):801–819. doi:10.1007/s10694-010-0201-x

    Article  Google Scholar 

  22. Jacob DJ (1999) Atmospheric pressure. In: Introduction to atmospheric chemistry: supplemental questions and problems, 4th edn. Princeton University Press, Princeton, p 12–20

  23. Ross HD, Miller FJ (2000) Understanding flame spread across alcohol pools. Fire Saf Sci 6:77–94. doi:10.3801/IAFSS.FSS.6-77

    Google Scholar 

  24. Wu YC, Wu XC, Lu SX, Zhang JQ, Cen KF (2012) Novel methods for flame pulsation frequency measurement with image analysis. Fire Technol 48(2):389–403. doi:10.1007/s10694-011-0227-8

    Article  Google Scholar 

  25. Ito A, Masuda D, Saito K (1991) A study of flame spread over alcohols using holographic interferometry. Combust Flame 83(3–4):375–389. doi:10.1016/0010-2180(91)90084-o

    Article  Google Scholar 

  26. Rice OK (1947) The effect of pressure on surface tension. J Chem Phys 15(5):333–335. doi:10.1063/1.1746507

    Article  Google Scholar 

  27. Hirano T, Suzuki T, Mashiko I, Tanabe N (1980) Gas movements in front of flames propagating across methanol. Combust Sci Technol 22(1–2):83–91. doi:10.1080/00102208008952373

    Article  Google Scholar 

  28. Hassan MI, Aung KT, Faeth GM (1998) Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust Flame 115(4):539–550. doi:10.1016/S0010-2180(98)00025-X

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the National Natural Science Foundation of China (No. 51036007) for its support. The authors also thank Ms. Geraldine Carton for her help with writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Lu, S., Guo, J. et al. Initial Fuel Temperature Effects on Flame Spread over Aviation Kerosene in Low- and High-Altitude Environments. Fire Technol 51, 707–721 (2015). https://doi.org/10.1007/s10694-014-0395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-014-0395-4

Keywords

Navigation