Skip to main content
Log in

Connection Between Fracture and Strengthening of Fiber-Reinforced Composites and the Fundamental Concepts of Time, Space, and Order

  • FIBER COMPOSITE MATERIALS
  • Published:
Fibre Chemistry Aims and scope

We have established a connection between fracture and strengthening of fiber-reinforced composites and the fundamental concepts of time, space, and order. We have identified and considered in detail two types of processes in composites loaded by external forces. For processes of the first type, we have obtained formulas interrelating the initial and final degree of order/disorder, the relative scale, and the time of existence of the system. For processes of the second type, we have obtained a formula for estimating the instantaneous degree of order/disorder as a function of time, the initial and the equilibrium degree of order/disorder, and the relaxation time of the system. We have considered simultaneous occurrence of processes of the first and second type. Experiments on composites have confirmed the connection between the kinetics of processes of the first and second type and the fundamental concepts of time, space, and order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. V. Motavkin and V. F. Skorodumov, Khim. Volokna, No. 1, 23-32 (2016).

  2. A. V. Motavkin and V. F. Skorodumov, Khim. Volokna, No. 3, 26-36 (2014).

  3. E. M. Pokrovskii and A. V. Motavkin, Vysokomol. Soedin. A, 38, No. 6, 980-988 (1996).

    Google Scholar 

  4. A. V. Motavkin, V. F. Skorodumov, and E. M. Pokrovskii, Vysokomol. Soedin. A, 44, No. 12, 2179-2188 (2002).

    CAS  Google Scholar 

  5. A. V. Motavkin and E. M. Pokrovskii, Vysokomol. Soedin. A, 44, No. 1, 78-84 (2002).

    CAS  Google Scholar 

  6. V. I. Al’perin, N. V. Korol’kov et al., Structural Fiberglass-Reinforced Plastics [in Russian], Khimiya, Moscow (1979). 360 pp.

    Google Scholar 

  7. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970). 375 pp.

    Google Scholar 

  8. E. M. Pokrovskii and A. V. Motavkin, Vysokomol. Soedin. A, 39, No. 12, 2017-2030 (1997).

    Google Scholar 

  9. I. Prigogine, From Being to Becoming: Time and Complexity in the Physical Sciences [Russian translation], Nauka, Moscow (1985). 328 pp.

    Google Scholar 

  10. V. V. Nalimov, In Search of Other Meanings [in Russian], Tsentr Gumanitarnykh Issledovanii [Center for Humanities Studies], Moscow/St. Petersburg (2013). 460 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Motavkin.

Additional information

A. V. Motavkin is Deceased.

Translated from Khimicheskie Volokna, Vol. 48, No. 5, pp. 29-41, September-October, 2016.

Appendices

Appendix 1

$$ \mathrm{for}\kern3em \left\langle {q}^{\ast}\right\rangle ={q}_0/{\left({\overline{t}}^{\ast}\right)}^{1/\overline{m}},\kern0.5em {\overline{t}}^{\ast }={\left(\left\langle {q}_0\right\rangle /\left\langle {q}^{\ast}\right\rangle \right)}^{\overline{m}},\kern0.5em 1\le {\overline{t}}^{\ast }<\infty $$
(4)
$$ \left\langle {p}_t\right\rangle =\left\langle {p}^{\infty}\right\rangle \frac{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left[\left(1-\left\langle {p}_0\right\rangle \right)\left(\left\langle {p}^{\infty}\right\rangle \right)\right]}^{-1}{e}^{-\left(1-\left\langle {p}^{\infty}\right\rangle \right)\overline{t}}}{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left(1-\left\langle {p}_0\right\rangle \right)}^{-1}{e}^{-\left(1-\left\langle {p}^{\infty}\right\rangle \right)\overline{t}}}. $$
(11)
$$ \left\langle {p}_{\overline{t}}\right\rangle =\left\langle {p}^{\infty}\right\rangle \frac{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left[\left(1-\left\langle {p}_0\right\rangle \right)\left(\left\langle {p}^{\infty}\right\rangle \right)\right]}^{-1}{e}^{-\left(1-\left\langle {p}^{\infty}\right\rangle \right)\overline{t}}}{1-e\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left(1-\left\langle {p}_0\right\rangle \right)}^{-1}{e}^{-\left(1-\left\langle {p}^{\infty}\right\rangle \right)\overline{t}}}, $$
(2)
$$ \left(\left\langle {q}_2^{\ast}\right\rangle -\left\langle {p}_{\widehat{t}}\right\rangle \right){\left[1- \exp \left(-\frac{2{\left(\overline{m}+1\right)}^2}{\left(\left\langle {q}_2^{\ast}\right\rangle -\left\langle {p}_{\widehat{t}}\right\rangle \right)+1}\right)\right]}^{-\frac{1}{\overline{m}+1}}=\left(\left\langle {q}_0\right\rangle -\left\langle {p}_0\right\rangle \right){\left[\frac{1-\left(\left\langle {q}_0\right\rangle -\left\langle {p}_0\right\rangle \right)}{2{\left(\overline{m}+1\right)}^2}\right]}^{\frac{1}{\overline{m}+1}}, $$
(14)
$$ \left\langle {p}_{\overline{t}}\right\rangle =\left\langle {p}^{\infty}\right\rangle \frac{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left(\left(1-\left\langle {p}_0\right\rangle \right)\left(\left\langle {p}^{\infty}\right\rangle \right)\right)}^{-1}{e}^{-1\left(-\left\langle {p}^{\infty}\right\rangle \right)\left(\frac{\left\langle {q}_0\right\rangle }{\left\langle {q}_2^{\ast}\right\rangle}\right)\overline{{}^m}\frac{1}{\overline{\tau}}}}{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left(1-\left\langle {p}_0\right\rangle \right)}^{-1}{e}^{-1\left(-\left\langle {p}^{\infty}\right\rangle \right)\left(\frac{\left\langle {q}_0\right\rangle }{\left\langle {q}_2^{\ast}\right\rangle}\right)\overline{{}^m}\frac{1}{\overline{\tau}}}} $$
(15)

with two unknowns \( \left\langle {p}_{\widehat{t}}\right\rangle \) and \( \left\langle {q}_2^{\ast}\right\rangle \) . From the first equation for the specified initial conditions, we can easily find that \( \left\langle {q}_2^{\ast}\right\rangle \)\( \left\langle {p}_{\widehat{t}}\right\rangle \) = c = const, from which we have \( \left\langle {q}_2^{\ast}\right\rangle \) = c + \( \left\langle {p}_{\widehat{t}}\right\rangle \) . Here 1/τ is in fractions of \( {\overline{t}}^{\ast }=\left(\left\langle {q}_0\right\rangle /{q}_1^{\ast}\right)\overline{m} \), while \( \left\langle {q}_1^{\ast}\right\rangle \) = c (for \( \left\langle {p}_{\widehat{t}}\right\rangle \) = 0). As a result, we obtain one implicit Eq. (16) (Appendix 1) with only one unknown \( \left\langle {p}_{\widehat{t}}\right\rangle \):

$$ \left\langle {p}_{\widehat{t}}\right\rangle =\frac{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left[\left(1-\left\langle {p}_0\right\rangle \right)\left(\left\langle {p}^{\infty}\right\rangle \right)\right]}^{-1}{e}^{-\left(1-\left\langle {p}^{\infty}\right\rangle \right){\left(\frac{\left\langle {q}_0\right\rangle }{c+\left\langle {p}_i\right\rangle}\right)}^{\overline{m}}\frac{1}{\tau }}}{1-\left(\left\langle {p}^{\infty}\right\rangle -\left\langle {p}_0\right\rangle \right){\left(1-\left\langle {p}_0\right\rangle \right)}^{-1}{e}^{-\left(1-\left\langle {p}^{\infty}\right\rangle \right){\left(\frac{\left\langle {q}_0\right\rangle }{c+\left\langle {p}_i\right\rangle}\right)}^{\overline{m}}\frac{1}{\tau }}}. $$
(16)

Appendix 2

$$ \frac{c_{\left\langle {p}_{\widehat{t}}\right\rangle }}{c_x}={\left(\frac{\tau_1}{\tau}\right)}^{1/\overline{m}}\to {\left(\frac{\sigma_1\left\langle {p}_{\widehat{t}}\right\rangle }{\sigma }+1-\left\langle {p}_{\widehat{t}}\right\rangle \right)}^{\overline{m}}={\left(\frac{{\overline{t}}^{\ast }}{\overline{\widehat{t}}}\right)}_{\exp }. $$
(25)

Appendix 3

$$ {\overline{v}}_{1(p)}=\overline{v}\to \frac{{\overline{\sigma}}_{1(p)}}{S\left({\overline{\sigma}}_{1(p)}\right)}=\frac{\overline{\sigma}}{S\left(\overline{\sigma}\right)}\to \frac{\left({\overline{\sigma}}_{1(p)}-\overline{\sigma}\right)\sqrt{n}}{\sqrt{S^2\left({\sigma}_{1(p)}\right)+{S}^2\left(\sigma \right)}}=\frac{\left({\overline{\sigma}}_{1(p)}/\overline{\sigma}-1\right)\sqrt{n}}{\sqrt{{\overline{v}}_{1(p)}^2{\overline{\sigma}}_{1(p)}^2/{\overline{\sigma}}^2+{\overline{v}}^2}}={t}_{\alpha, n-2}, $$
(1)
$$ \mathrm{for}\kern3em {\overline{\sigma}}_{1(p)}=\sum_{i=1}^3\frac{{\overline{\sigma}}_{1(p)}{n}_i}{n}=\frac{388.8\cdot 6}{18}+\frac{221.25\cdot 4}{18}+\frac{262.62\cdot 6}{18}=295.9, $$
(4)
$$ {\overline{\sigma}}_{1(p)}=\sum_{i=1}^3\frac{{\overline{\sigma}}_{1(p)}{n}_i}{n}=\frac{144.5\cdot 6}{18}+\frac{124.25\cdot 4}{18}+\frac{159\cdot 8}{18}=146.4, $$
(II)

Appendix 4

$$ {\overline{m}}_q\approx {\overline{m}}_1{p}_{\overline{\widehat{q}}}+\left(1-{p}_{\overline{\widehat{q}}}\right)\overline{m}\to {\overline{m}}_q/\overline{m}\approx \left({\overline{m}}_1/\overline{m}\right){p}_{\overline{\widehat{q}}}+\left(1-{p}_{\overline{\widehat{q}}}\right). $$
(III)
$$ \overline{m}{p}_{\overline{\widehat{q}}}/\overline{m}\approx \left({l}_0^{\ast }/{d}_0^{\ast}\right)\upgamma {p}_{\overline{\widehat{q}}}+\left(1-\upgamma {p}_{\overline{\widehat{q}}}\right)\approx 5\cdot 0.9\cdot 0.0327+0.970\cong 1.10. $$
(IV)

Here we take into account that

  1. a)

    clusters of the second type occupy only a fraction γ [2] of the area unoccupied by clusters of the first type;

  2. b)

    since the values of \( {l}_0^{\ast } \) and \( {d}_0^{\ast } \) are approximately proportional to the length of the reinforcing fibers, their ratio \( {l}_0^{\ast }/{d}_0^{\ast } \) ≈ 5 [2].

Appendix 5

$$ \mathrm{Theory}\kern3em {\left(\overline{t}/\overline{\widehat{t}}\right)}_{\mathrm{theor}}={\left[\left(c+\left\langle {p}_{\overline{\widehat{t}}}\right\rangle /\left\langle {q}_1^{\ast}\right\rangle \right)\right]}^{\overline{m}}\overline{\widehat{q}}\approx 2.20. $$
(V)
$$ \mathrm{Experiment}:\kern3em {\left({\overline{t}}^{\ast }/\overline{\widehat{t}}\right)}_{\exp }={\sum_{i=1}^3\left({\sigma}_{1,i}\left\langle {p}_{\overline{\widehat{t}}}\right\rangle /{\sigma}_i+1-\left\langle {p}_{\overline{\widehat{t}}}\right\rangle \right)}^{\overline{m}}\overline{q}\left({n}_1/n\right)=\frac{3.51\cdot 6}{18}+\frac{1.81\cdot 8}{18}+\frac{2.03\cdot 4}{18}\approx 2.42. $$
(VI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motavkin, A.V., Skorodumov, V.F. Connection Between Fracture and Strengthening of Fiber-Reinforced Composites and the Fundamental Concepts of Time, Space, and Order. Fibre Chem 48, 384–397 (2017). https://doi.org/10.1007/s10692-017-9803-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-017-9803-0

Keywords

Navigation