Skip to main content
Log in

Measuring the impact of Indonesian antennas on global geodetic VLBI network

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

In the near future, two radio telescopes will be installed in the Indonesian region. These telescopes are proposed to be integrated into the existing Very Long Baseline Interferometry (VLBI) network both for astronomical and geodetical purposes. Here we simulate the impact of the inclusion of the future Indonesian antennas to the estimates of Earth Orientation Parameters and the station position. The simulation was performed in two types of VLBI sessions. First, we analyse the contribution of Indonesian antennas to the existing intensive session INT3 (IN320-314), which focuses on the estimation of dUT1. We found that the addition of Indonesian antennas has reduced the estimated dUT1 repeatability value by about 25%. Next, we simulate the 24-hour session by considering two existing network configurations, which are R4 (R4934) and AOV (AOV049). Overall we found that the addition of Indonesian antennas to each network configuration decreases the repeatability value of the Earth Orientation Parameter by about 20%. Meanwhile, the repeatability value of station position is reduced up to 12%. This reduction is already achieved even when we include only one Indonesian antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Altamimi, Z., Rebischung, P., Métivier, L, Collilieux, X.: ITRF2014: A new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121(8), 6109–6131 (2016)

    Article  ADS  Google Scholar 

  2. Böhm, J., Böhm, S., Boisits, J., Girdiuk, A., Gruber, J., Hellerschmied, A., Krásná, H., Landskron, D., Madzak, M., Mayer, D., McCallum, J., McCallum, L., Schartner, M., Teke, K.: Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry. Publ. Astron. Soc. Pac. 130(986), 044503 (2018). http://stacks.iop.org/1538-3873/130/i=986/a=044503

    Article  ADS  Google Scholar 

  3. Charlot, P., Jacobs, C., Gordon, D., Lambert, S., de Witt, A., Böhm, J, Fey, A., Heinkelmann, R., Skurikhina, E., Titov, O., et al: The third realization of the international celestial reference frame by very long baseline interferometry. Astron. Astrophys. 644, A159 (2020)

    Article  Google Scholar 

  4. Duah Asabere, B., Gaylard, M., Horellou, C., Winkler, H., Jarrett, T.: Radio astronomy in Africa: The case of Ghana. In: The South African Institute of Physics (SAIP 2014) Conference Proceedings (2015)

  5. Herring, T.A., Davis, J.L., Shapiro, I.I.: Geodesy by radio interferometry: The application of Kalman filtering to the analysis of very long baseline interferometry data. J. Geophys. Res. Solid Earth 95(B8), 12561–12581 (1990)

    Article  Google Scholar 

  6. Hidayat, T., Mahasena, P., Dermawan, B., Hadi, T., Premadi, P., Herdiwijaya, D.: Clear sky fraction above Indonesia: an analysis for astronomical site selection. Mon. Not. R. Astron. Soc. 427(3), 1903–1917 (2012)

    Article  ADS  Google Scholar 

  7. Hidayat, T., Munir, A., Dermawan, B., Jaelani, A., Leon, S., Nugroho, D., Suksmono, A., Mahasena, P., Premadi, P., Herdiwijaya, D., Kunjaya, C., Dupe, Z., Brahmantyo, B., Mandey, D., Yusuf, M., Wulandari, H., Arief, F., Irfan, M., Jatmiko, A., Akbar, E., Sianturi, H., Tanesib, J., Warsito, A., Utama, J.: Radio frequency interference measurements in Indonesia. A survey to establish a radio astronomy observatory. Exp. Astron. 37 (1), 85–108 (2014)

    Article  ADS  Google Scholar 

  8. Hoare, M.: Recycling for radio astronomy. Astron. Geophys. 53 (1), 1–19 (2012)

    Article  Google Scholar 

  9. Kehm, A., Bloßfeld, M., König, P., Seitz, F.: Future TRFs and GGOS–where to put the next SLR station?. Adv. Geosci. 50, 17–25 (2019)

    Article  Google Scholar 

  10. Kurihara, S., Lovell, J., Cho, J., Gulyaev, S., Shu, F., Kawabata, R.: Foundation of the Asia-Oceania VLBI group for geodesy and astrometry. IVS 2014 Annual Report 20–25 (2014)

  11. Malkin, Z.: On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs. J. Geod. 83(6), 547–556 (2009)

    Article  ADS  Google Scholar 

  12. Mumpuni, E.S., Puspitarini, L., Priyatikanto, R., Yatini, C.Y., Putra, M.: Future astronomy facilities in Indonesia. Nature Astron. 2(12), 930–932 (2018)

    Article  ADS  Google Scholar 

  13. Petrachenko, B., Niell, A., Behrend, D., Corey, B., Böhm, J., Chralot, P., Collioud, A., Gipson, J., Haas, R., Hobiger, T., et al.: Design aspects of the VLBI2010 system. Progress report of the IVS VLBI2010 committee (2009)

  14. Schartner, M., Böhm, J: VieSched++: a new VLBI scheduling software for geodesy and astrometry. Publ. Astron. Soc. Pac. 131(1002), 084501 (2019)

    Article  ADS  Google Scholar 

  15. Schartner, M., Böhm, J., Mayer, D., McCallum, L., Hellerschmied, A.: Recent developments in scheduling with VieVS. In: Proceedings of the 23rd European VLBI group for geodesy and astrometry working meeting, pp 113–116 (2017)

  16. Schartner, M., Böhm, J., Nothnagel, A.: Optimal antenna locations of the VLBI Global Observing System for the estimation of Earth orientation parameters. Earth Planets Space 72(1), 1–14 (2020)

    Article  Google Scholar 

  17. UN: Global geodetic reference frame for sustainable development (GGRF). Resolution of the United Nations, Ref. No. A/69/L.53, adopted by the United Nations General Assembly on Feb. 26, 2015, New York (2015)

  18. Uunila, M., Nothnagel, A., Leek, J.: Influence of source constellations on UT1 derived from IVS INT1 sessions (2012)

  19. Woodburn, L., Natusch, T., Weston, S., Thomasson, P., Godwin, M., Granet, C., Gulyaev, S.: Conversion of a New Zealand 30-Metre Telecommunications Antenna into a Radio Telescope. Publ. Astron. Soc. Aust. 32(e017), 1–14 (2015)

    Google Scholar 

  20. Yonekura, Y., Saito, Y., Sugiyama, K., Soon, K., Momose, M., Yokosawa, M., Ogawa, H., Kimura, K., Abe, Y., Nishimura, A., Hasegawa, Y., Fujisawa, K., Ohyama, T., Kono, Y., Miyamoto, Y., Sawada-Satoh, S., Kobayashi, H., Kawaguchi, N., Honma, M., Shibata, K., Sato, K., Ueno, Y., Jike, T., Tamura, Y., Hirota, T., Miyazaki, A., Niinuma, K., Sorai, K., Takaba, H., Hachisuka, K., Kondo, T., Sekido, M., Murata, Y., Nakai, N., Omodaka, T.: The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Japan 68(5), 1–16 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

INH, TH, and BD gratefully acknowledge the support from the 2020 WCU Program of Institut Teknologi Bandung that allows us to conduct this project. We thank Prof. Fengchun Shu (SHAO) and an anonymous reviewer for their insightful comments and suggestions on the manuscript. We also would like to sincerely express our special thanks of gratitude to Indosat Ooredoo for their continuous support in fundamental research, particularly to develop the VLBI Project in Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibnu Nurul Huda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, I., Hidayat, T., Dermawan, B. et al. Measuring the impact of Indonesian antennas on global geodetic VLBI network. Exp Astron 52, 141–155 (2021). https://doi.org/10.1007/s10686-021-09773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09773-1

Keywords

Navigation