Skip to main content
Log in

Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Chimerism is a peculiar, yet widespread, type of group living in which genetically heterogeneous entities are created through fusion between conspecifics. Here we tested whether chimerism provides direct benefits to the kelp Lessonia spicata, by analyzing its consequences on reproductive investment and success, at both the genotype and thallus levels. In addition, we quantified the frequency of chimerism in two natural populations, tested if group members were close kin, and evaluated the effects of relatedness and the number of genotypes per thallus on reproduction. Chimeric thalli were frequent (>60 %) in natural populations of L. spicata. In most cases, average intragroup relatedness was not significantly different from the background population. Reproductive investment was not significantly affected by the type of thallus (chimeric versus non-chimeric), by the number of genotypes per thallus or the average relatedness within thallus. Chimerism did not result in net benefits or costs in terms of genotypic reproductive success or probability of reproducing at the genotypic level. Yet, at the thallus level, chimerism increased reproductive success and the probability of reproducing, since more than one genotype reproduced in chimeric thallus. At the population level, chimerism affects L. spicata reproductive success by allowing the coexistence of a higher density of potential reproducers and mates compared to a scenario with only non-chimeric thallus. Chimerism may then have an important effect on the effective population size and possibly in reducing selfing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Blades:

Flattened, leaf-like structures of algae, where most of the photosynthetic activity takes place, and where reproductive structure differentiate from vegetative, photosynthetic tissue

Holdfast:

The massive structure that sticks the alga onto the substratum, from which stipes emerge

Stipe:

A stem-like structure emerging from the holdfast and producing blades

Sorus (pl. sori):

A cluster of sporangia, where meiosis occur, which develops mostly on blades

Thallus (pl. thalli):

The whole organism, including the holdfast, stipes and blades. It can be chimeric (composed by more than one genotype) or non-chimeric (composed by a single genotype)

Chimera:

A genetically heterogeneous entity formed after the fusion of different genotypes

Reproductive investment:

The amount of algal reproductive tissue

Genotypic reproductive success:

The number of offspring genetically assigned to a parental genotype

Standardized genotypic reproductive success:

The number of offspring assigned to a parental genotype divided by the number of stipes bearing that genotype within the thallus

Group reproductive success:

The sum of the genotypic reproductive success of each genotype within a chimeric thallus

References

  • Aanen DK, Debets AJM, de Visser JAGM et al (2008) The social evolution of somatic fusion. BioEssays 30:11–12

    Article  Google Scholar 

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383

    Article  Google Scholar 

  • Allee WC (1931) Animal aggregations. University of Chicago Press, Chicago

    Google Scholar 

  • Amar KO, Chadwick NE, Rinkevich B (2008) Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 8:126–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Amos W, Hoffmann JI, Frodsham A et al (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14

    Article  CAS  Google Scholar 

  • Barner AK, Pfister CA, Wootton JT (2011) The mixed mating system of the sea palm kelp Postelsia palmaeformis: few costs to selfing. Proc R Soc B 278:1347–1355

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B et al (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7, URL: http://CRAN.R-project.org/package=lme4

  • Ben-Shlomo R, Douek J, Rinkevich B (2001) Heterozygote deficiency and chimerism in remote populations of a colonial ascidian from New Zealand. Mar Ecol Progr Ser 209:109–117

    Article  Google Scholar 

  • Ben-Shlomo R, Motro U, Paz G et al (2008) Pattern of settlement and natural chimerism in the colonial urochordate Botryllus schlosseri. Genetica 132:51–58

    Article  PubMed  Google Scholar 

  • Bishop JDD, Sommerfeldt AD (1999) Not like Botryllus: indiscriminate postmetamorphic fusion in a compound ascidian. Proc R Soc Lond B 266:241–248

    Article  Google Scholar 

  • Brusini J, Robin C, Franc A (2013) To fuse or not to fuse? An evolutionary view of self-recognition systems. J Phylogen Evol Biol 1:103

    Article  Google Scholar 

  • Buss LW (1981) Group living, competition and the evolution of cooperation in a sessile invertebrate. Science 213:1012–1014

    Article  CAS  PubMed  Google Scholar 

  • Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79:5337–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damuth J, Heisler IL (1988) Alternative formulations of multilevel selection. Biol Philos 3:407–430

    Article  Google Scholar 

  • Fajardo A, McIntire EJB (2010) Merged trees in second-growth, fire origin forests in Patagonia, Chile: positive spatial association patterns and their ecological implications. Am J Bot 97:1424–1430

    Article  PubMed  Google Scholar 

  • Faugeron S, Martínez EA, Correa JA et al (2005) Long-term copper mine waste disposal in Northern Chile associated with gene flow disruption of the intertidal kelp Lessonia nigrescens. Mar Ecol Progr Ser 288:129–140

    Article  CAS  Google Scholar 

  • Faugeron S, Veliz D, Peralta G et al (2009) Development and characterization of nine polymorphic microsatellite markers in the Chilean kelp Lessonia nigrescens. Mol Ecol Resour 9:937–939

    Article  CAS  PubMed  Google Scholar 

  • Folse H, Roughgarden J (2010) What is an individual organism? Q Rev Biol 84:447–472

    Article  Google Scholar 

  • Forsyth DR (2006) Group dynamics, 4th edn. Thomson Learning, Inc., Belmont

    Google Scholar 

  • Foster KR, Fortunato A, Strassman JE et al (2002) The costs and benefits of being a chimera. Proc R Soc Lond B 269:2357–2362

    Article  Google Scholar 

  • González AV, Santelices B (2008) Coalescence and chimerism in Codium (Chlorophyta) from central Chile. Phycologia 47:468–476

    Article  Google Scholar 

  • González A, Beltran J, Hiriart-Bertrand L et al (2012) Identification of cryptic species in the Lessonia nigrescens complex (Pheophyceae, Laminariales). J Phycol 48:1153–1165

    Article  PubMed  Google Scholar 

  • González A, Borras-Chaves R, Beltrán J et al (2013) Morphological, ultrastructural, and genetic characterization of coalescence in the intertidal and shallow subtidal kelps Lessonia spicata and L. berteroana (Laminariales, Heterokontophyta). J Appl Phycol 26:1107–1113

  • Grafen A (1982) How not to measure inclusive fitness. Nature 298:425–426

    Article  CAS  PubMed  Google Scholar 

  • Grosberg RK, Quinn JF (1986) The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322:456–459

    Article  Google Scholar 

  • Grosberg RK, Levitan DR, Cameron BB (1996) Evolutionary genetics of allorecognition in the colonial hydroid Hydractinia simbiolongicarpus. Evolution 50:2221–2240

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of altruistic behaviour I & II. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  • Hart MW, Grosberg RK (1999) Kin interactions in a colonial hydrozoan (Hydractinia symbilongicarpus): population structure on a mobile landscape. Evolution 53:793–805

    Article  Google Scholar 

  • Høeg JT, Lutzen J (1995) Life cycle and reproduction in the Cirripedia Rhizocephala. Oceanog Mar Biol Annu Rev 33:427–485

    Google Scholar 

  • Johansson ML, Raimondi PT, Reed DC et al (2013) Looking into the black box: simulating the role of self-fertilization and mortality in the genetic structure of Macrocystis pyrifera. Mol Ecol 22:4842–4854

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Klekowski EJ (1969) Reproductive biology of the Pteridophyta. II. Theoretical considerations. Bot J Linn Soc 62:347–359

    Article  Google Scholar 

  • Krueger-Hadfield SA, Roze D, Correa JA et al (2015) O father where art though? Paternity analyses in a natural population of the haploid-diploid seaweed Chondrus crispus. Heredity 114:185–194

    Article  CAS  PubMed  Google Scholar 

  • Lukas JR, Creel SR, Waser PM (1996) How to measure inclusive fitness, revisited. Anim Behav 51:225–228

    Article  Google Scholar 

  • Maldonado M (1998) Do chimeric sponges have improved chances of survival? Mar Ecol Progr Ser 164:301–306

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Martínez EA, Santelices B (1998) Selective mortality on haploid and diploid microscopic stages of Lessonia nigrescens Bory (Phaeophyta, Laminariales). J Exp Mar Biol Ecol 229:219–239

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London

    Book  Google Scholar 

  • McIntire EJB, Fajardo A (2011) Facilitation within species: a possible origin of group-selected superorganisms. Am Nat 178:88–97

    Article  PubMed  Google Scholar 

  • Mercier A, Zhao Sun Z, Hamel JF (2011) Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina. Proc R Soc Lond B 278:3517–3522

    Article  Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Pancer Z, Gershon H, Rinkevich B (1995) Coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate Botryllus schlosseri. Biol Bull 189:106–112

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch PW (2005) Dimorphism, parasitism and sex revisited: modes of reproduction among deep-sea ceratioid anglerfish (Teleostei: Lophiiformes). Ichtyol Res 52:207–236

    Article  Google Scholar 

  • Pineda-Krch M, Lehtilä K (2004) Costs and benefits of genetic heterogeneity within organisms. J Evol Biol 17:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Plough LV, Moran A, Marko P (2014) Density drives polyandry and relatedness influences paternal success in the Pacific gooseneck barnacle, Pollicipes elegans. BMC Evol Biol 14:81–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Puill-Stephan E, Willis BL, van Herwerden L et al (2009) Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS ONE 11:e7751

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Quirici V, Faugeron S, Hayes LD et al (2011) Absence of kin structure in a population of the group-living rodent Octodon degus. Behav Ecol 22:248–254

    Article  Google Scholar 

  • Raymundo LJ, Maypa AP (2004) Getting bigger faster: mediation of size-specific mortality via fusion in juvenile coral transplant. Ecol Appl 14:281–295

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Reed DC, Anderson TW, Ebeling AW et al (1997) The role of reproductive synchrony in the colonization potential of kelp. Ecology 78:2443–2457

    Article  Google Scholar 

  • Rinkevich B (2001) Human natural chimerism: an acquired character or a vestige of evolution? Hum Immunol 62:651–657

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich B (2002) Germ cell parasitism as an ecological and evolutionary puzzle: hitchhicking with positively selected genotypes. Oikos 96:25–30

    Article  Google Scholar 

  • Rinkevich B (2005) Natural chimerism in colonial urochordates. J Exp Mar Biol Ecol 322:93–109

    Article  Google Scholar 

  • Rinkevich B (2011) Quo vadis chimerism? Chimerism 2:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinkevich B, Loya Y (1985) Intraspecific competition in a reef coral: effects on growth and reproduction. Oecologia 66:100–105

    Article  Google Scholar 

  • Rinkevich B, Shapira M (1999) Multi-partner urochordate chimeras outperform two-partner chimerical entities. Oikos 87:315–320

    Article  Google Scholar 

  • Rinkevich B, Yankelevich I (2004) Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 207:3531–3536

    Article  PubMed  Google Scholar 

  • Ross CN, French JA, Ort G (2007) Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proc Natl Acad Sci USA 104:6278–6282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santelices B (2004) A comparison of ecological responses among aclonal (unitary), clonal and coalescing macroalgae. J Exp Mar Biol Ecol 300:31–64

    Article  Google Scholar 

  • Santelices B, Aedo D (2006) Group recruitment and early survival of Mazzaella laminarioides. J Appl Phycol 18:583–589

    Article  Google Scholar 

  • Santelices B, Alvarado JL (2008) Demographic consequences of coalescence in sporeling populations of Mazzaella laminarioides (Gigartinales, Rsdophyta). J Phycol 44:624–636

    Article  CAS  PubMed  Google Scholar 

  • Santelices B, Correa J, Aedo D et al (1999) Convergent biological processes in coalescing Rodophyta. J Phycol 35:1127–1149

    Article  Google Scholar 

  • Santelices B, Alvarado JL, Flores V (2010) Size increments due to interindividual fusions: how much and for how long? J Phycol 46:685–692

    Article  Google Scholar 

  • Schiel DR, Foster MS (2006) The population biology of large grown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Evol Syst 37:343–372

    Article  Google Scholar 

  • Schwarz A, Hawes I, Nelson W et al (2006) Growth and reproductive phenology of the kelp Lessonia variegata in central New Zealand. New Zeal J Fresh 40:273–284

    Article  Google Scholar 

  • Segovia NI, Vásquez JA, Faugeron S et al (2015) On the advantage of sharing a holdfast: density dependent effects on the occurrence of fusion of individuals in the kelp Lessonia nigrescens. Mar Ecol 36:1107–1117

    Article  CAS  Google Scholar 

  • Sommerfeldt AD, Bishop JDD, Wood CA (2003) Chimerism following fusion in a clonal ascidian (Urochordata). Biol J Linn Soc 93:15254–15259

    Google Scholar 

  • Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 93:15254–15259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA 96:9148–9153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia FJ, Largier JL, Castillo M et al (2014) Latitudinal discontinuity in termal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9:e110841

    Article  PubMed  PubMed Central  Google Scholar 

  • Tellier F, Meynard AP, Correa JA et al (2009) Phylogeographic analyses of the 30oS south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol 53:679–693

    Article  CAS  PubMed  Google Scholar 

  • Tellier F, Tapia J, Faugeron S et al (2011) The Lessonia nigrescens species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J Phycol 47:894–903

    Article  PubMed  Google Scholar 

  • Thomson JD, Herre EA, Hamrick JL (1991) Stone genetic mosaics in strangler fig trees: implications for tropical conservation. Science 254:1214–1216

    Article  CAS  PubMed  Google Scholar 

  • Till-Bottraud I, Fajardo A, Rioux D (2012) Multi-stemmed trees of Nothofagus pumilio second-growth forest in Patagonia are formed by highly related individuals. Ann Bot 110:905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasquez JA (2008) Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. J App Phycol 20:457–467

    Article  Google Scholar 

  • Vásquez JA, Tala F and Vega JMA et al (2008) Bases ecológicas y evaluación de usos alternativos para el manejo de praderas de algas pardas de la III y IV regiones. Fondo de Investigación Pesquera, INFORME FINAL No 2005-22. 220 pp. Available from http://www.fip.cl/Archivos/Hitos/Informes/inffinal%202005-22.pdf. Accessed Mar 2010

  • Velicer GJ, Vos M (2009) Sociobiology of the Myxobacteria. Annu Rev Microbiol 63:599–623

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2011) Unbiased relatedness estimation in structured populations. Genetics 187:887–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Wernberg T (2005) Holdfast aggregation in relation to morphology, age, attachment and drag for the kelp Ecklonia radiata. Aquat Bot 82:168–180

    Article  Google Scholar 

Download references

Acknowledgments

This study is dedicated to Paula Ayerdi (in memorian), who planned and conducted all the field work. We would like to thank to all who helped with field sampling and laboratory measurements. Help provided by G. Peralta and T. Muñoz at the laboratory is also appreciated. We thank L. Ebensperger and two anonymous reviewers who helped to improve this manuscript. Funding was provided by grants FONDECYT 1090742, Fondo Basal proyecto FB001 (CeBiB) and ICM P10–033F to SF. FAC was supported by a PhD scholarship from CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Faugeron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo Casares, F., Faugeron, S. Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evol Ecol 30, 953–972 (2016). https://doi.org/10.1007/s10682-016-9849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9849-0

Keywords

Navigation