Skip to main content
Log in

Negative niche construction favors the evolution of cooperation

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

By benefitting others at a cost to themselves, cooperators face an ever present threat from defectors—individuals that avail themselves of the cooperative benefit without contributing. A longstanding challenge to evolutionary biology is to understand the mechanisms that support the many instances of cooperation that nevertheless exist. In spatially-structured environments, clustered cooperator populations reach greater densities, which creates more mutational opportunities to gain beneficial non-social adaptations. Hammarlund et al. recently demonstrated that cooperation rises in abundance by hitchhiking with these non-social mutations. However, once adaptive opportunities have been exhausted, the ride abruptly ends as cooperators are displaced by adapted defectors. Using an agent-based model, we demonstrate that the selective feedback that is created as populations construct their local niches can maintain cooperation at high proportions and even allow cooperators to invade. This cooperator success depends specifically on negative niche construction, which acts as a perpetual source of adaptive opportunities. As populations adapt, they alter their environment in ways that reveal additional opportunities for adaptation. Despite being independent of niche construction in our model, cooperation feeds this cycle. By reaching larger densities, populations of cooperators are better able to adapt to changes in their constructed niche and successfully respond to the constant threat posed by defectors. We relate these findings to previous studies from the niche construction literature and discuss how this model could be extended to provide a greater understanding of how cooperation evolves in the complex environments in which it is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635

    Article  Google Scholar 

  • Asfahl KL, Walsh J, Gilbert K, Schuster M (2015) Non-social adaptation defers a tragedy of the commons in Pseudomonas aeruginosa quorum sensing. ISME J. doi:10.1038/ismej.2014.259

    PubMed  Google Scholar 

  • Bernier SP, Ha D-G, Khan W, Merritt JHM, O’Toole GA (2011) Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol 162:680–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SP, Johnstone RA (2001) Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc R Soc Lond B Biol Sci 268:961–965

    Article  CAS  Google Scholar 

  • Brown SP, Taddei F (2007) The durability of public goods changes the dynamics and nature of social dilemmas. PLoS ONE 2:e593

    Article  PubMed  PubMed Central  Google Scholar 

  • Connelly BD, Dickinson KJ, Hammarlund SP, Kerr B (2015) Model, data, and analysis for Negative niche construction favors the evolution of cooperation. Zenodo. doi:10.5281/zenodo.31838

    Google Scholar 

  • Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M et al (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338:264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci 109:8259–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–414

    Article  CAS  PubMed  Google Scholar 

  • Driscoll WW, Pepper JW (2010) Theory for the evolution of diffusible external goods. Evolution 64:2682–2687

    Article  PubMed  Google Scholar 

  • Dumas Z, Kümmerli R (2012) Cost of cooperation rules selection for cheats in bacterial metapopulations. J Evol Biol 25:473–484

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JA, Doebeli M (2009) A simple and general explanation for the evolution of altruism. Proc R Soc B Biol Sci 276:13–19

    Article  Google Scholar 

  • Foster K, Shaulsky G, Strassmann J, Queller D, Thompson C (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature 431:693–696

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, West SA (2010) Greenbeards. Evolution 64:25–38

    Article  PubMed  Google Scholar 

  • Ghoul M, West SA, Diggle SP, Griffin AS (2014) An experimental test of whether cheating is context dependent. J Evol Biol 27:551–556

    Article  CAS  PubMed  Google Scholar 

  • Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Hafer N, Milinski M (2015) When parasites disagree: evidence for parasite-induced sabotage of host manipulation. Evolution 69:611–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in science conference (SciPy2008), pp 11–15

  • Hamblin SR, White PA, Tanaka MM (2014) Viral niche construction alters hosts and ecosystems at multiple scales. Trends Ecol Evol 29:594–599

    Article  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour I & II. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund SP, Connelly BD, Dickinson KJ, Kerr B (2015) The evolution of cooperation by the Hankshaw effect. bioRxiv. doi:10.1101/016667

  • Harrison F (2007) Microbial ecology of the cystic fibrosis lung. Microbiology 153:917–923

    Article  CAS  PubMed  Google Scholar 

  • Hartfield M, Otto SP (2011) Recombination and hitchhiking of deleterious alleles. Evolution 65:2421–2434

    Article  PubMed  Google Scholar 

  • Kerr B, Godfrey-Smith P, Feldman MW (2004) What is altruism? Trends Ecol Evol 19:135–140

    Article  PubMed  Google Scholar 

  • Koestler BJ, Waters CM (2014) Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in Vibrio cholerae. Infect Immun 82:3002–3014

    Article  PubMed  PubMed Central  Google Scholar 

  • Kümmerli R, Brown SP (2010) Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc Natl Acad Sci 107:18921–18926

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC (2011) High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334:1548–1551

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Odling-Smee FJ, Feldman MW (1996) The evolutionary consequences of niche construction: a theoretical investigation using two-locus theory. J Evol Biol 9:293–316

    Article  Google Scholar 

  • Laland KN, Odling-Smee FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci 96:10242–10247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann L (2007) The evolution of trans-generational altruism: kin selection meets niche construction. J Evol Biol 20:181–189

    Article  CAS  PubMed  Google Scholar 

  • McKinney W (2010) Data structures for statistical computing in Python. In: van der Walt S, Millman J (eds) Proceedings of the 9th Python in science conference, pp 51–56

  • Morgan AD, Quigley BJZ, Brown SP, Buckling A (2012) Selection on non-social traits limits the invasion of social cheats. Ecol Lett 15:841–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadell CD, Foster KR, Xavier JB (2010) Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 6:e1000716

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Santos M, Szathmáry E (2008) Genetic hitchhiking can promote the initial spread of strong altruism. BMC Evol Biol 8:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwilk DW, Kerr B (2002) Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99:431–442

    Article  Google Scholar 

  • Sinervo B, Chaine A, Clobert J, Calsbeek R, Hazard L, Lancaster L et al (2006) Self-recognition, color signals, and cycles of greenbeard mutualism and altruism. Proc Natl Acad Sci 103:7372–7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dyken JD, Wade MJ (2012) Origins of altruism diversity II: runaway coevolution of altruistic strategies via “reciprocal niche construction”. Evolution 66:2498–2513

    Article  PubMed  PubMed Central  Google Scholar 

  • Veelders M, Brückner S, Ott D, Unverzagt C, Mösch H-U, Essen L-O (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci 107:22511–22516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waite AJ, Shou W (2012) Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proc Nat Acad Sci 109:19079–19086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007a) The social lives of microbes. Annu Rev Ecol Evol Syst 38:53–77

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007b) Evolutionary explanations for cooperation. Curr Biol 17:R661–R672

    Article  CAS  PubMed  Google Scholar 

  • Wilder B, Stanley KO (2015) Altruists proliferate even at a selective disadvantage within their own niche. PLoS ONE 10:e0128654

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X-X, Rainey PB (2013) Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution 67:3161–3174

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Peter Conlin, Sylvie Estrela, Carrie Glenney, Martha Kornelius, and Luis Zaman for helpful comments on the manuscript, and to Anuraag Pakanati for assistance with simulations. BK thanks Kevin Laland, Marc Feldman, John Odling-Smee, Lucy Odling-Smee, and Doug Irwin for the invitation to participate in the Frontiers in Niche Construction meeting at SFI. This material is based upon research supported by the National Science Foundation under Grant DBI-1309318 (Postdoctoral Research Fellowship in Biology to BDC), Cooperative Agreement DBI-0939454 (BEACON STC), and Grant DEB-0952825 (CAREER Award to BK). Computational resources were provided by an award from Google Inc. (to BDC and BK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Kerr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4753 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connelly, B.D., Dickinson, K.J., Hammarlund, S.P. et al. Negative niche construction favors the evolution of cooperation. Evol Ecol 30, 267–283 (2016). https://doi.org/10.1007/s10682-015-9803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9803-6

Keywords

Navigation