Skip to main content
Log in

Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.)

  • Published:
Euphytica Aims and scope Submit manuscript

A Correction to this article was published on 03 December 2018

This article has been updated

Abstract

Cucumber is one of the most important vegetable crops worldwide, which makes it a good candidate to produce doubled haploid (DH) lines to accelerate plant breeding. Traditionally, these approaches involved induction of gynogenesis or parthenogenesis with irradiated pollen, which carries some disadvantages compared to androgenesis. Despite this, studies on anther/microspore cultures in cucumber are surprisingly scarce. Furthermore, most of them failed to unambiguously demonstrate the haploid origin of the individuals obtained. In this work we focused on anther cultures using two cucumber genotypes, different previously published protocols for anther culture, different in vitro culture variants to make it more efficient, and most importantly, a combination of flow cytometry and microsatellite molecular markers to evaluate the real androgenic potential and the impact of anther wall tissue proliferation. We developed a method to produce DH plants involving a bud pretreatment at 4 °C, a 35 °C treatment to anthers, culture with BAP and 2,4-D, and induction of callus morphogenesis by an additional 35 °C treatment and sequential culture first in liquid medium in darkness and second in solid medium with light. We also found that factors such as genotype, proliferation of anther wall tissues, orientation of anthers in the culture medium and growth regulator composition of the initial anther culture medium have a remarkable impact. Our rate of chromosome doubling (81%) was high enough to exclude additional chromosome doubling steps. Together, our results present androgenesis as an improvable but yet more convenient alternative to traditional gynogenesis and parthenogenesis-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 03 December 2018

    The Kurtar et al. (2016) citation along the text was wrongly added by mistake. Instead, it should be Abdollahi et al. (2015).

References

  • Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS (2016) Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turk J Biol 40(3):571–579

    Article  CAS  Google Scholar 

  • Ashok Kumar HG, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell, Tissue Organ Cult 78(3):201–208. https://doi.org/10.1023/b:ticu.0000025637.56693.68

    Article  Google Scholar 

  • Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6(4):1247–1260. https://doi.org/10.1093/mp/sss154

    Article  CAS  PubMed  Google Scholar 

  • Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci 130(4):555–560

    Google Scholar 

  • Corral-Martínez P, Nuez F, Seguí-Simarro JM (2011) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica 178(2):215–228. https://doi.org/10.1007/s10681-010-0303-z

    Article  Google Scholar 

  • Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102(1):61–72. https://doi.org/10.1007/s001220051618

    Article  CAS  Google Scholar 

  • Dong Y-Q, Zhao W-X, Li X-H, Liu X-C, Gao N-N, Huang J-H, Wang W-Y, Xu X-L, Tang Z-H (2016) Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep. https://doi.org/10.1007/s00299-016-2018-7

    Article  PubMed  Google Scholar 

  • FAOSTAT (2018) http://faostat.fao.org. Accessed July 2018

  • Ficcadenti N, Sestili S, Annibali S, Di Marco M, Schiavi M (1999) In vitro gynogenesis to induce haploid plants in melon Cucumis melo L. Genet Breed 53:255–257

    Google Scholar 

  • Gałązka J, Niemirowicz-Szczytt K (2013) Review of research on haploid production in cucumber and other cucurbits. Folia Hortic. https://doi.org/10.2478/fhort-2013-0008

    Article  Google Scholar 

  • Hamidvand Y, Abdollahi MR, Chaichi M, Moosavi SS (2013) The effect of plant growth regulators on callogenesis and gametic embryogenesis from anther culture of cucumber (Cucumis sativus L.). Int J Agric Crop Sci 5(10):1089

    Google Scholar 

  • Kurtar ES, Balkaya A, Kandemir D (2016) Evaluation of haploidization efficiency in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) through anther culture. Plant Cell, Tissue Organ Cult 127(2):497–511. https://doi.org/10.1007/s11240-016-1074-6

    Article  Google Scholar 

  • Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Metwally EI, Moustafa SA, El-Sawy BI, Shalaby TA (1998) Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell, Tissue Organ Cult 52(3):171–176. https://doi.org/10.1023/a:1005908326663

    Article  CAS  Google Scholar 

  • Mohamed M, Refaei E (2004) Enhanced haploids regeneration in anther culture of summer squash (Curcurbita pepo L.). Cucurbit Genet Coop Rep 27:57–60

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell, Tissue Organ Cult 112(3):353–360. https://doi.org/10.1007/s11240-012-0242-6

    Article  CAS  Google Scholar 

  • Rakha M, Metwally E, Moustafa S, Etman A, Dewir Y (2012) Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci 6(1):23–30

    CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018. https://doi.org/10.1073/pnas.81.24.8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauton A, Dumas de Vaulx R (1987) Obtention de plantes haploides chez melon (Cucumis melo L.) par gynogenese indute par du pollen irraidié. Agronomie 7:141–148

    Article  Google Scholar 

  • Seguí-Simarro JM (2016) Androgenesis in solanaceae. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis. Methods in molecular biology, vol 1359. Springer, New York, pp 209–244. https://doi.org/10.1007/978-1-4939-3061-6_9

    Chapter  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861

    Article  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58(5):1119–1132

    Article  PubMed  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120(3–4):358–369. https://doi.org/10.1159/000121085

    Article  PubMed  Google Scholar 

  • Shalaby TA (2006) Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ 32(1):173–183

    Google Scholar 

  • Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell, Tissue Organ Cult 90(3):245–254. https://doi.org/10.1007/s11240-007-9263-y

    Article  CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45(10):705–708

    Article  Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in arabidopsis. Plant J 59(3):448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Cucurbitaceae 2008: proceedings of the IXth Eucarpia meeting on genetics and breeding of cucurbitaceae, pp 371–374

  • Xie M, Qin L-Y, Pan J-S, He H-L, Wu A-Z, Cai R (2005) Flower morphogenesis and microspore development versus anther culture of cucumber. Acta Bot Boreal-Occid Sin 25(6):1096

    Google Scholar 

  • Zhan Y, Chen J-F, Malik AA (2009) Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hort Sin 36(2):221–226

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to all the whole staff of the Cell Biology Group for helping and training AA during his stay in the group. This work was supported by Grant AGL2017-88135-R to JMSS from Spanish Ministerio de Economía y Competitividad (MINECO) jointly funded by FEDER.

Author information

Authors and Affiliations

Authors

Contributions

AA performed all the experimental work and analyzed the results. AZ, MRA and JMSS designed the experimental work and analyzed the results. JMSS wrote the manuscript.

Corresponding author

Correspondence to Jose M. Seguí-Simarro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, A., Zebarjadi, A., Abdollahi, M.R. et al. Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica 214, 216 (2018). https://doi.org/10.1007/s10681-018-2297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2297-x

Keywords

Navigation