Skip to main content
Log in

Genomic changes in generations of synthetic rapeseed-like allopolyploid grown under selection

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Resynthesized Brassica napus L. is an important source for broadening genetic diversity and producing lines with desired characteristics. It is also a fine model to study the processes of genomic reorganizations in recently formed polyploids. We firstly performed molecular cytogenetic characterization of newly resynthesized rapeseed (B. rapa ssp. narinosa × B. oleracea ssp. capitata) and its parental species, and also examined genomic changes in hybrids of the succeeding generations grown under pressure of selection of yellow-seeded progeny. For karyotype studies, FISH/GISH with 45S, 5S rDNA, C genome specific BoB014O06 BAC clone and genomic DNA of parental B. rapa was performed. Synthetic S0–S2 hybrids had common rapeseed karyotypes (2n = 38) including 14 loci of 45S rDNA sites and 10 loci of 5S rDNA. Progeny selection led to gradual deletion of C genome chromosomes in hybrid karyotypes. So, in karyotypes of S6 and S7 hybrids, the chromosome number was reduced to 2n = 20–22, and only chromosomes of A genome bearing 10–13 loci of 45S rDNA and 8–10 loci of 5S rDNA, variations in chromosome number, chromosome rearrangements as well as examples of trisomy and monosomy were revealed. Our findings indicate an enhanced genome instability in resynthesized rapeseed lines developed under the pressure of selection which might lead to chromosome rearrangements or/and deletions and even elimination of the whole parental genome in hybrids in succeeding generations. The approach can be useful for the development of rapeseed lines with trisomy, chromosome addition/substitution lines important for genetics and plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

FISH:

Fluorescent in situ hybridisation

GISH:

Genomic in situ hybridization

FISH/GISH:

Simultaneous FISH and GISH procedure

DAPI:

40,6-diamidino-2-phenylindole

9-AMA:

9-aminoacridine

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Opin Plant Biol 8:135–141. doi:10.1016/j.pbi.2005.01.001

    Article  CAS  Google Scholar 

  • Akbar MA (1987) Artificial Brassica napus flowering in Bangladesh. Theor Appl Genet 73:465–468. doi:10.1007/BF00262517

    Article  CAS  PubMed  Google Scholar 

  • Albertin W, Balliau T, Brabant P, Chèvre AM, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113. doi:10.1534/genetics.106.057554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertin W, Alix K, Balliau T, Brabant P, Davanture M, Malosse C, Valot B, Thiellement H (2007) Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization. BMC Genomics 8:56. doi:10.1186/1471-2164-8-56

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali HB, Lysak MA, Schubert I (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome 48:341–346. doi:10.1139/g04-116

    Article  CAS  PubMed  Google Scholar 

  • Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Pat Heslop-Harrison JS (2008) The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J 56:1030–1044. doi:10.1111/j.1365-313X.2008.03660.x

    Article  CAS  PubMed  Google Scholar 

  • Amosova AV, Zemtsova LV, Grushetskaya ZE, Samatadze TE, Mozgova GV, Pilyuk YE, Volovik VT, Melnikova NV, Zelenin AV, Lemesh VA et al (2014) Intraspecific chromosomal and genetic polymorphism in Brassica napus L. detected by cytogenetic and molecular markers. J Genet 93:133–143

    Article  CAS  PubMed  Google Scholar 

  • Burbulis N, Kott LS (2005) A new yellow-seeded canola genotype originating from double low black-seeded Brassica napus cultivars. Can J Plant Sci 85:109–114

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B et al (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953. doi:10.1126/science.1253435

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28:240–252. doi:10.1002/bies.20374

    Article  PubMed  Google Scholar 

  • Chen BY, Heneen WK, Jonsson R (1988) Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. rapa L. with special emphasis on seed colour. Plant Breed 101:52–59

    Article  Google Scholar 

  • Cheung WY, Champagne G, Hubert N, Landry BS (1997) Comparison of the genetic maps of Brassica napus and Brassica oleracea. TAG Theor Appl Genet 94(5):569–582

    Article  CAS  Google Scholar 

  • Fujii K, Ohmido N (2011) Stable progeny production of the amphidiploid resynthesized Brassica napus cv. Hanakkori, a newly bred vegetable. Theor Appl Genet 123:1433–1443. doi:10.1007/s00122-011-1678-5

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28. doi:10.1111/j.1469-8137.2009.03089.x

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417. doi:10.1105/tpc.107.054346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundy SM (1986) Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N Engl J Med 314:745–748. doi:10.1056/NEJM198603203141204

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Surveying genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802. doi:10.1007/s10722-004-5541-2

    Article  CAS  Google Scholar 

  • Hasterok R, Maluszynska J (2000) Cytogenetic markers of Brassica napus chromosomes. J Appl Genet 41:1–9

    Google Scholar 

  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    Article  CAS  Google Scholar 

  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216. doi:10.1093/aob/mcj031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong SJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180:1849–1857. doi:10.1534/genetics.108.095893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inomata N (1978) Production of interspecific hybrids in Brassica campestris × B. oleracea by culture in vitro of excised ovaries. I. Development of excised ovaries in the crosses of various cultivars. Jpn J Genet 53:161–173

    Article  Google Scholar 

  • Jesske T, Olberg B, Schierholt A, Becker HC (2013) Resynthesized lines from domesticated and wild Brassica taxa and their hybrids with B. napus L.: genetic diversity and hybrid yield. Theor Appl Genet 126:1053–1065. doi:10.1007/s00122-012-2036-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235. doi:10.1093/aob/mci016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korneichuk VA (1983) Manual of Brassica napus L. VIR, Leningrad

    Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chèvre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480. doi:10.1007/s00122-006-0393-0

    Article  CAS  PubMed  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348. doi:10.1104/pp.105.066308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malek MA, Ismail MR, Rafii MY, Rahman M (2012) Synthetic Brassica napus L.: development and studies on morphological characters, yield attributes, and yield. Sci World J. doi:10.1100/2012/416901

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Mason AS, Snowdon RJ (2016) Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. Plant Biol (Stuttgart, Germany) 18:883–892. doi:10.1111/plb.12462

    Article  CAS  Google Scholar 

  • McDonald BE (1995) Oil properties of importance in human nutrition. In: Kimber DS, McGregor DI (eds) Brassica oilseeds—production and utilization. CAB, Wallingford, pp 291–299

    Google Scholar 

  • Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333. doi:10.1023/A:1018646223643

    Article  Google Scholar 

  • Muravenko OV, Amosova AV, Samatadze TE, Popov KV, Poletaev AI, Zelenin AV (2003) 9-Aminoacridine: an efficient reagent to improve human and plant chromosome banding patterns and to standardize chromosome image analysis. Cytometry A 51:52–57. doi:10.1002/cyto.a.10002

    Article  PubMed  Google Scholar 

  • Muravenko OV, Yurkevich OY, Bolsheva NL, Samatadze TE, Nosova IV, Zelenina DA, Volkov AA, Popov KV, Zelenin AV (2009) Comparison of genomes of eight species of sections Linum and Adenolinum from the genus Linum based on chromosome banding, molecular markers and RAPD analysis. Genetica 135:245–255. doi:10.1007/s10709-008-9273-7

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis of Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–453

    Google Scholar 

  • Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B et al (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503. doi:10.1534/genetics.106.062968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21:373–385. doi:10.1105/tpc.108.062273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    Article  CAS  PubMed  Google Scholar 

  • Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472. doi:10.1046/j.1439-0523.2001.00640.x

    Article  Google Scholar 

  • Rahman H (2013) Review: breeding spring canola (Brassica napus L.) by the use of exotic germplasm. Can J Plant Sci 93:363–373

    Article  CAS  Google Scholar 

  • Rahman H, Bennett RA, Seguin-Swartz G (2015) Broadening genetic diversity in Brassica napus canola: development of canola-quality spring B. napus from B. napus × B. oleracea var. alboglabra interspecific crosses. Can J Plant Sci 95:29–41

    Article  CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Sarla N, Raut RN (1988) Synthesis of Brassica carinata from Brassica nigra × Brassica oleracea hybrids obtained by ovary culture. Theor Appl Genet 76:846–849

    Article  CAS  PubMed  Google Scholar 

  • Snowdon R, Lühs W, Friedt W (2007) Oilseed rape. In: Kole C (ed) Genome mapping and molecular breeding in plants. Oilseeds. Springer, Heidelberg, pp 55–114

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588. doi:10.1146/annurev.arplant.043008.092039

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Rakow G, Prabhu VK, Friesen KR (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnowska K, Cegielska-Taras T (2014) Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. × B. rapa L. hybrids. In Vitro Cell Develop Biol Plant 50:257–262. doi:10.1007/s11627-013-9587-8

    Article  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112. doi:10.1111/j.1469-8137.2010.03182.x

    Article  CAS  PubMed  Google Scholar 

  • Taguchi T, Sakamoto K, Terada M (1993) Variations in somatic hybrid plants between cabbage and Chinese cabbage. Plant Biotechnol 10:138–143

    CAS  Google Scholar 

  • Takeshita M, Kato M, Tokumasu S (1980) Application of ovule culture to the production of intergeneric or interspecific hybrids in Brassica and Raphanus. Jpn J Genet 55:373–387

    Article  Google Scholar 

  • Tang Z, Li J, Zhang X, Chen L, Wang R (1997) Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breed 116:471–474

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979. doi:10.1534/genetics.104.033209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genome wide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517. doi:10.1534/genetics.105.047894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Tu J-X, Li Z-Y, Fu T-D, Ma C-Z, Shen J-X (2008) Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89

    Article  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42(1):225–249

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Xu J, Li Y, Zhang L, Shi S, Wu J, Liu K (2007) Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome 50(7):611–618. doi:10.1139/g07-044

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187(1):37–49. doi:10.1534/genetics.110.122473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229(3):471–483. doi:10.1007/s00425-008-0844-8

    Article  CAS  PubMed  Google Scholar 

  • Zemtsova LV, Amosova AV, Samatadze TE, Bolsheva NL, Volovik VT, Zelenin AV, Muravenko OV (2014) Differentiation of closely related genomes and chromosome identification in Brassica napus L. by simultaneous fluorescence in situ hybridization and genomic in situ hybridization. Dokl Biochem Biophys 457:137–140. doi:10.1134/S1607672914040061

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Hondo K, Kakihara F, Kato M (2001) Production of amphidiploids between A and C genomic species in Brassica. Breed Res 3(1):31–41

    Article  Google Scholar 

  • Zhang Y, Li X, Chen W, Yi B, Wen J, Shen J, Ma C, Chen B, Tu J, Fu T (2011) Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127-17. Mol Breed 28(3):335–342

    Article  CAS  Google Scholar 

  • Zhang X, Liu T, Li X, Duan M, Wang J, Qiu Y, Wang H, Song J, Shen D (2016) Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Sci Rep 6:18618. doi:10.1038/srep18618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng JS, Sun CZ, Xiao D, Zhang SN, Bonnema G, Hou XL (2015) Karyotype variation and conservation in morphotypes of non-heading Chinese cabbage. Plant Syst Evol 301(7):1781–1791

    Article  Google Scholar 

  • Zhidkova EN, Karpachev VV (1996) Development of resynthesized forms of spring Russian turnip for expansion of its genetic potential. Sel’skokhozyaistvennaya Biol (Agric Biol) 5:123–125

    Google Scholar 

  • Zhi-wen L, Ting-dong F, Jin-xing T, Bao-yuan C (2005) Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet 110(2):303–310. doi:10.1007/s00122-004-1835-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Program of the Russian Academy of Sciences “Dynamics of Plant, Animal and Human Genofonds” (Grant No. 0103-2015-0117) and also the Program of fundamental research for state academies for 2013-2020 years (Task 0103-2014-0008 Subprogram #53 General genetics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra V. Amosova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosova, A.V., Zemtsova, L.V., Yurkevich, O.Y. et al. Genomic changes in generations of synthetic rapeseed-like allopolyploid grown under selection. Euphytica 213, 217 (2017). https://doi.org/10.1007/s10681-017-2009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2009-y

Keywords

Navigation