Skip to main content
Log in

Creating cold resistant strawberry via interploidy hybridization between octoploid and dodecaploid

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Strawberry cultivars showed limited cold resistance in the Northeast of China, while we obtained a synthetic dodecaploid strawberry hybrid ‘YH15-10’ (2n = 12x = 84) which showed sufficient cold resistance in this area. The reciprocal crosses between F. × ananassa cv. ‘Allstar’ (2n = 8x = 56) and ‘YH15-10’ (2n = 12x = 84) were carried out to select cold resistant strawberry in this study. The 134 seedlings were obtained from the cross of Allstar × YH15-10, while failed in its reciprocal cross. The 30 randomly selected seedlings were examined in terms of morphological characters, chromosome numbers and cold resistance. Most morphological characters were widely separated among F1 progeny with a high broad-sense heritability, which showed that these variations mainly resulted from genetic effect. Some hybrids exhibited heterosis, especially in growth vigor and runner production. Among the 30 tested hybrids, 28 decaploids (2n = 10x = 70), one octoploid (2n = 8x = 56) and one enneaploid (2n = 9x = 63) were observed. The 63.3% hybrids demonstrated higher cold resistance than that of ‘Allstar’ at P < 0.05. These high polyploidy strawberries have potential values in commercial production and modern cultivar improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadi H, Bringhurst RS (1992) Breeding strawberries at the decaploid level. J Am Soc Hortic Sci 117(5):856–862

    Google Scholar 

  • Bauer A (1993) Progress in breeding decaploid Fragaria × vescana. Acta Hortic 348:60–64

    Article  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406. doi:10.1146/annurev.arplant.58.032806.103835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ML (2014) Chromosome doubling of pentaploid strawberrys from Fragaria × ananassa and F. viridis and investigation of biological characteristics of decaploid lines. Master Thesis, Nanjing Agricultural University, China

  • Chen CH, Goeden-Kallemeyn KC (1979) In vitro induction of tetraploid plants from colchicine-treated diploid daylily callus. Euphytica 28:705–709. doi:10.1007/BF00038937

    Article  CAS  Google Scholar 

  • Chen XS, Wu Y, Chen MX, He TM, Feng JR, Liang Q, Liu W, Yang HH, Zhang LJ (2006) Inheritance and correlation of self-compatibility and other yield components in the apricot hybrid F1 populations. Euphytica 150:69–74. doi:10.1007/s10681-006-9094-7

    Article  Google Scholar 

  • Cheng X, Chen SM, Chen FD, Fang WM, Deng YM, She LF (2010) Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. nankingense (Nakai) Tzvel. achieved using ovary rescue and their cold tolerance characteristics. Euphytica 172:101–108. doi:10.1007/s10681-009-0056-8

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846. doi:10.1038/nrg1711

    Article  CAS  PubMed  Google Scholar 

  • Ellis JR (1958) Cytogenetic studies in the genera Fragaria and Potentilla. Ph.D. Thesis, University of Manchester, England

  • Evans WD (1974) Evidence of a crossability barrier in diploid × hexaploid and diploid × octoploid crosses in the genus Fragaria. Euphytica 23:95–100. doi:10.1007/bf00032746

    Article  Google Scholar 

  • Ge HB, Lei JJ, Guo ZH (1997) A preliminary report on chromosome number and interspecific hybridization in Fragaria. J Hebei Agric Univ 20(3):56–60

    Google Scholar 

  • Gu XF, Yang AF, Meng H, Zhang JR (2005) In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua. Plant Cell Rep 24:671–676. doi:10.1007/s00299-005-0017-1

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Chen Y, Gao Z, Qiao Y, Wang X (2015) Transcription factors and anthocyanin genes related to low-temperature tolerance in rd29A: RdreB1BI transgenic strawberry. Plant Physiol Biochem 89:31–43. doi:10.1016/j.plaphy.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Watanabe H, Tsutsui K (2003) Use of ovule culture to cross between Delphinium species of different ploidy. Euphytica 129:275–279. doi:10.1023/A:1022206731894

    Article  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Over expression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387. doi:10.1111/j.1467-7652.2004.00082.x

    Article  CAS  PubMed  Google Scholar 

  • Hummer KE (2012) A new species of Fragaria (Rosaceae) from Oregon. J Bot Res Inst Texas 6(1): 9–15. http://www.jstor.org/stable/41972353

  • Jin W, Dong MJ, Yin SP, Yan AL, Chen MX (2007) CBF1 gene transgenic strawberry and increase freezing tolerance. Acta Bot Bor 27(2):223

    CAS  Google Scholar 

  • Lei JJ, Dai HP, Deng MQ, Wu LP, Hu WY (2002) Studies on the interspecific hybridization in the genus Fragaria. Acta Hortic 29(6):519–523. doi:10.3321/j.issn:0513-353X.2002.06.004

    Google Scholar 

  • Lei JJ, Fan W, Wang SG, Dai HP (2009) Observations on pollen characteristics and meiosis in natural pentaploid strawberry. J Shenyang Agric Univ 40(4):396–399

    Google Scholar 

  • Lei JJ, Tan CH, Dai HP, Pang L (2010) Study on obtaining pentaploid interspecific hybrids and its backcross in strawberry. J Jilin Agric Univ 32(3):284–288

    Google Scholar 

  • Lei JJ, Xue L, Dai HP (2012) Obtaining dodecaploid interspecific hybrid in strawberry and its backcross. Sci Agric Sin 45(22):4651–4659

    CAS  Google Scholar 

  • Lei JJ, Xue L, Dai HP, Deng MQ (2014) The taxonomy of Chinese Fragaria species. Acta Hortic 1049(1):289–294

    Article  Google Scholar 

  • Ma FX (2003) Production and molecular cytogenetics of interspecific hybrids from the crosses of Fragaria nilgerrensis × F. ananassa and F. mandschurica × F. ananassa. Ph.D. Thesis, Nanjing Agricultural University, China

  • Marta AE, Camadro EL, Diaz-Ricci JC, Castagnaro AP (2004) Breeding barriers between the cultivated strawberry, Fragaria × ananassa, and related wild germplasm. Euphytica 136:139–150. doi:10.1023/B:EUPH.0000030665.95757.76

    Article  Google Scholar 

  • Noguchi Y, Mochizuki T, Sone K (2002) Breeding of a new aromatic strawberry by interspecific hybridization Fragaria × ananassa × F. nilgerrensis. J Jpn Soc Hortic Sci 71(2):208–213

    Article  Google Scholar 

  • Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploidy grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69(5):543–551. doi:10.2503/jjshs.69.543

    Article  CAS  Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hortic Sci 127(4):489–494

    CAS  Google Scholar 

  • Ramulu KS, Verhoeven HA, Dijkhuis P (1991) Mitotic blocking, micronucleation, and chromosome doubling by oryzalin, amiprophos-methyl, and colchicine in potato. Protoplasma 160:65–71. doi:10.1007/BF01539957

    Article  CAS  Google Scholar 

  • Rho IR, Woo JG, Jeong HJ, Jeon HY, Lee CH (2012a) Characteristics of F1 hybrids and inbred lines in octoploid strawberry (Fragaria × ananassa Duchesne). Plant Breed 131(4):550–554. doi:10.1111/j.1439-0523.2012.01958.x

    Article  Google Scholar 

  • Rho IR, Hwang YJ, Lee HI, Lim KB, Lee CH (2012b) Interspecific hybridization of diploids and octoploids in strawberry. Sci Hortic 134:46–52. doi:10.1016/j.scienta.2011.10.021

    Article  Google Scholar 

  • Rohloff J, Kopka J, Erban A, Winge P, Wilson RC, Bones AM, Alsheikh MK (2012) Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry). Phytochemistry 77:99–109. doi:10.1016/j.phytochem.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  • Scott DH (1951) Cytological studies on polyploids derived from tetraploid Fragaria vesca and cultivated strawberries. Genetics 36:311–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi QH, Liu P, Liu MJ (2012) Advances in ploidy breeding of fruit trees. Acta Hortic Sin 39(9):1639–1654

    CAS  Google Scholar 

  • Slot M, Wirth C, Schumacher J, Mohren GM, Shibistova O, Lloyd J, Ensminger I (2005) Regeneration patterns in boreal scots pine glades linked to cold-induced photoinhibition. Tree Physiol 25(9):1139–1150. doi:10.1093/treephys/25.9.1139

    Article  PubMed  Google Scholar 

  • Stanys V, Rugienius R, Gelvonauskiene D, Zalunskaite I, Pakalniskyte J (2004) Interspecific hybridization in genus Fragaria and evaluation of the hybrids for cold hardiness and red stele resistance using in vitro methods. V Int Symp Vitro Cult Hortic Breed 725:451–456

    Google Scholar 

  • Staudt G (2009) Strawberry biogeography, genetics and systematics. Acta Hortic 842:71–83

    Article  Google Scholar 

  • Sun QR, Sun H, Li LG, Bell RL (2009) In vitro colchicine-induced polyploid plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L.) cultivar, ‘Fertility’. J Hortic Sci Biotech 84(5):548–552. doi:10.1080/14620316.2009.11512564

    Article  CAS  Google Scholar 

  • Wei Y, Li ZL, Chen XY, Wang YP, Dai JP, Zhang SN (2010) Agronomic traits and heat tolerance of diploid and tetraploid petunia. Fujian J Agric Sci 25(2):187–191

    Google Scholar 

  • Xue L, Dai HP, Lei JJ (2015) Creating high polyploidy pink-flowered strawberries with improved cold tolerance. Euphytica 206(2):417–426. doi:10.1007/s10681-015-1499-8

    Article  CAS  Google Scholar 

  • Yahata M, Kunitake H, Yabuya T, Yamashita K, Kashihara Y, Komatsu H (2005) Production of a doubled haploid from a haploid pummelo using colchicine treatment of axillary shoot buds. J Am Soc Hortic Sci 130(6):899–903

    CAS  Google Scholar 

  • Yanagi T, Hummer KE, Iwata T, Sone K, Nathewet P, Takamura T (2010) Aneuploid strawberry (2n = 8x + 2 = 58) was developed from homozygous unreduced gamete (8x) produced by second division restitution in pollen. Sci Hortic 125:123–128. doi:10.1016/j.scienta.2010.03.015

    Article  CAS  Google Scholar 

  • Yang FX, Jin F, Yan X (2010) Comprehensive evaluation of different strawberry varieties’ tolerance to coldness. J Fruit Sci 27(3):368–372

    CAS  Google Scholar 

  • Zhao MZ (2006) Descriptors and data standard for strawberry (Fragaria spp.). Chinese Agriculture Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Fund of China (No. 30971976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Xue, L., Guo, R. et al. Creating cold resistant strawberry via interploidy hybridization between octoploid and dodecaploid. Euphytica 213, 194 (2017). https://doi.org/10.1007/s10681-017-1980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1980-7

Keywords

Navigation