Skip to main content
Log in

Transformation of Campanula by wild type Agrobacterium rhizogenes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Compact growth is an important quality criterion in horticulture. Many Campanula species and cultivars exhibit elongated growth which is suppressed by chemical retardation and cultural practice during production to accommodate to the consumer’s desire. The production of compact plants via transformation with wild type Agrobacterium rhizogenes is an approach with great potential to produce plants that are non-GMO. Efficient transformation and regeneration procedures vary widely among both plant genera and species. Here we present a transformation protocol for Campanula. Hairy roots were produced on 26–90% of the petioles that were used for transformation of C. portenschlagiana (Cp), a C. takesimana × C. punctata hybrid (Chybr) and C. glomerata (Cg). Isolated hairy roots grew autonomously and vigorously without added hormones. The Cg hairy roots produced chlorophyll and generated plantlets in response to treatments with cytokinin (42 µM 2iP) and auxin (0.67 µM NAA). In contrast, regeneration attempts of transformed Cp and Chybr roots lead neither to the production of chlorophyll nor to the regeneration of shoots. Agropine A. rhizogenes strains integrate split T-DNA in TL- and TR-DNA fragments into the plant genome. In this study, regenerated plants of Cg did not contain TR-DNA, indicating that a selective pressure against this T-DNA fragment may exist in Campanula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alpizar E et al (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  PubMed  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    Article  CAS  PubMed  Google Scholar 

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    Article  CAS  PubMed  Google Scholar 

  • Chriqui D, Guivarc’h A, Dewitte W, Prinsen E, van Onkelen H (1996) Rol genes and root initiation and development. Plant Soil 187:47–55

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Müller R, Sriskandarajah S (2009) Transformation of Hibiscus rosa-sinensis L. by Agrobacterium rhizogenes. J Hortic Sci Biotech 84:204–208

    Article  CAS  Google Scholar 

  • Clifford SC, Runkle ES, Langton FA, Mead A, Foster SA, Pearson S, Heins RD (2004) Height control of poinsettia using photoselective filters. HortScience 39:383–387

    Google Scholar 

  • Dai W, Castillo C (2007) Factors affecting plant regeneration from leaf tissues of Buddleia species. HortScience 42:1670–1673

    CAS  Google Scholar 

  • De Castro VL, Goes KP, Chiorato SH (2004) Developmental toxicity potential of paclobutrazol in the rat. Int J Environ Health Res 14:371–380

    Article  PubMed  Google Scholar 

  • EU (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. OJ L 106/1–38

  • Ferrante A, Trivellini A, Scuderi D, Romano D, Vernieri P (2015) Post-production physiology and handling of ornamental potted plants. Postharvest Biol Technol 100:99–108

    Article  CAS  Google Scholar 

  • Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451

    Article  CAS  PubMed  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Jensen L, Hegelund JN, Olsen A, Lütken H, Müller R (2016) A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers. BMC Plant Biol 16:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Jian B et al (2009) Agrobacterium rhizogenes-mediated transformation of superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Delbart FC, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    Article  CAS  Google Scholar 

  • Kyndt T et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latimer JG, Thomas PA (1991) Application of brushing for growth control of tomato transplants in a commercial setting. HortTechnology 1:109–110

    Google Scholar 

  • Lima JE, Benedito VA, Figueira A, Peres LEP (2009) Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep 28:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Lütken H, Jensen LS, Topp SH, Mibus H, Müller R, Rasmussen SK (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotechnol J 8:211–222

    Article  PubMed  Google Scholar 

  • Lütken H, Laura M, Borghi C, Ørgaard M, Allavena A, Rasmussen S (2011) Expression of KxhKN4 and KxhKN5 genes in Kalanchoë blossfeldiana ‘Molly’ results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants. Plant Cell Rep 30:2267–2279

    Article  PubMed  Google Scholar 

  • Lütken H, Clarke JL, Muller R (2012a) Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep 31:1141–1157

    Article  PubMed  Google Scholar 

  • Lütken H, Jensen EB, Wallström SV, Müller R, Christensen B (2012b) Development and evaluation of a non-gmo breeding technique exemplified by Kalanchoë. Acta Hort 961:51–58

    Article  Google Scholar 

  • Lütken H, Wallström SV, Jensen EB, Christensen B, Müller R (2012c) Inheritance of rol -genes from Agrobacterium rhizogenes through two generations in Kalanchoë. Euphytica 188:397–407

    Article  Google Scholar 

  • Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant-Microbe Interact 25:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ozyigit II, Dogan I, Tarhan EA (2013) Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement. Springer, New York, pp 1–48

    Chapter  Google Scholar 

  • Park N, Tuan P, Li X, Kim Y, Yang T, Park S (2011) An efficient protocol for genetic transformation of Platycodon grandiflorum with Agrobacterium rhizogenes. Mol Biol Rep 38:2307–2313

    Article  CAS  PubMed  Google Scholar 

  • Rademacher W (2000) Growth retardents: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  CAS  PubMed  Google Scholar 

  • Seglie L, Scariot V, Larcher F, Devecchi M, Chiavazza PM (2011) In vitro seed germination and seedling propagation in Campanula spp. Plant Biosyst 146:15–23

    Article  Google Scholar 

  • Sivanesan I, Lim M, Jeong B (2011) Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata Lam. var. rubriflora Makino. Plant Cell Tissue Organ Cult 107:365–369

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Slightom JL, Jouanin L, Leach F, Drong RF, Tepfer D (1985) Isolation and identification of TL-DNA/plant junctions in Convolvulus arvensis transformed by Agrobacterium rhizogenes strain A4. EMBO J 4:3069–3077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen MT, Danielsen V (2006) Effects of the plant growth regulator, chlormequat, on mammalian fertility. Int J Androl 29:129–133

    Article  PubMed  Google Scholar 

  • Sriskandarajah S, Frello S, Jørgensen K, Serek M (2004) Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots. Plant Cell Rep 23:59–63

    Article  CAS  PubMed  Google Scholar 

  • Sriskandarajah S, Mibus H, Serek M (2008) Regeneration and transformation in adult plants of Campanula species. Plant Cell Rep 27:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Taneja J, Jaggi M, Wankhede D, Sinha A (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet 206:17–23

    Article  CAS  Google Scholar 

  • Zhou M-L, Zhu X-M, Shao J-R, Wu Y-M, Tang Y-X (2012) An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4. Appl Biochem Biotechnol 166:1674–1684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the innovation consortium “Innovative Plants” through the Danish Agency for Science, Technology and Innovation. A. rhizogenes strain A4 was kindly provided by Dr. David Tepfer, Laboratoire de Biologie de la Rhizosphère, INRA, Versailles, Cédex, France. Gartneriet PKM A/S is greatly acknowledged for providing plant material. We thank Christian Hald Madsen and Kell Kristiansen for interesting discussions.

Authors’ contribution

JNH and SVW developed the transformation procedure. JNH, HL and RM designed the experiments. JNH and UBL performed the experiments and analysed the data. JNH, HL and UBL wrote the manuscript. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefine Nymark Hegelund.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegelund, J.N., Lauridsen, U.B., Wallström, S.V. et al. Transformation of Campanula by wild type Agrobacterium rhizogenes . Euphytica 213, 51 (2017). https://doi.org/10.1007/s10681-017-1845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1845-0

Keywords

Navigation