Skip to main content
Log in

Early sex discrimination in Carica papaya by nuclei FISH

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Carica papaya L. is a polygamous species with three sex types: male, female and hermaphrodite. However, the sex identification is only possible after flowering, by inspection of the flowers, which takes time, labor and financial resources. Molecular biology researchers have developed a number of genetic markers in an attempt to distinguish the papaya sex before reaching reproductive maturity. In the present study, we aimed to provide a molecular diagnosis of early sexing for the female and hermaphrodite plants of two commercially important Brazilian varieties of C. papaya (‘Golden’ and ‘Rubi’). For this, it was investigated seven sequence characterized amplified region markers previously described in the literature by the polymerase chain reaction technique, and then, it was developed a probe for fluorescence in situ hybridization (FISH) protocol by using a chosen marker as probe. This molecular marker was selected based on its consistently polymorphic banding pattern, which was also demonstrated by FISH analyses: fluorescent signals in hermaphrodite nuclei isolated from leaves of both cultivars, but no detectable intensity fluorescence signal in female nuclei from both cultivars. Once the probe was constructed, this new and reliable technique, based on FISH in nuclei, could be a valuable tool for sexing the papaya seedlings with commercial application in large scale and open the possibility towards automatized diagnostic assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araújo FS, Carvalho CR, Clarindo WR (2010) Genome size, base composition and karyotype of Carica papaya L. Nucleus 53(1–2):25–31. doi:10.1007/s13237-010-0007-8

    Article  Google Scholar 

  • Aryal R, Ming R (2014) Sex determination in flowering plants: papaya as a model system. Plant Sci 217–218:56–62. doi:10.1016/j.plantsci.2013.10.018

    Article  PubMed  Google Scholar 

  • Bajpai A, Singh AK (2006) Meiotic behavior of Carica papaya L.: spontaneous chromosome instability and elimination in important cvs. in North Indian conditions. Cytologia 71:131–136. doi:10.1508/cytologia.71.131

    Article  Google Scholar 

  • Chaves-Bedoya G, Nuñez V (2007) A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica 153:215–220. doi:10.1007/s10681-006-9256-7

    Article  CAS  Google Scholar 

  • Costa FR, Pereira TNS, Gabriel APC, Pereira MG (2011) ISSR markers for genetic relationships in Caricaceae and sex differentiation in papaya. Crop Breed Appl Biotechnol 11:352–357. doi:10.1590/S1984-70332011000400009

    Article  Google Scholar 

  • Damasceno Junior PC, Costa FR, Pereira TNS, Neto MF, Pereira MG (2009) Karyotype determination in three Caricaceae species emphasizing the cultivated form (C. papaya L.). Caryologia 62:10–15. doi:10.1080/00087114.2004.10589660

    Article  Google Scholar 

  • Damasceno Junior PC, Pereira TNS, Neto MF, Pereira MG (2010) Meiotic behavior of Carica papaya and Vasconcellea monoica. Caryologia 63:229–236. doi:10.1080/00087114.2010.10589732

    Article  Google Scholar 

  • Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, Wang M, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111. doi:10.1007/s00122-002-0995-0

    CAS  PubMed  Google Scholar 

  • FAOSTAT (Food and Agriculture Organization—Statistics) (2014) Crop production. Available: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Accessed 3 June 2014

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. doi:10.1126/science.220.4601.1049

    Article  CAS  PubMed  Google Scholar 

  • Gangopadhyay G, Roy SK, Ghose K, Poddar R, Bandyopadhyay T, Basu D, Mukherjee KK (2007) Sex detection of Carica papaya and Cycas circinalis in pre-flowering stage by ISSR and RAPD. Curr Sci 92:524–526

    CAS  Google Scholar 

  • Gschwend AR, Yu Q, Moore PH, Saski C, Chen C, Wang J, Na J-K, Ming R (2011) Construction of papaya male and female BAC libraries and application in physical mapping of the sex chromosomes. J Biomed Biotechnol 2011, Article ID 929472. doi:10.1155/2011/929472

  • Hofmeyr JDJ (1938) Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. S Afr Dept Agric Sci Bul 187:64

    Google Scholar 

  • Hofmeyr JDJ (1967) Some genetic breeding aspects of Carica papaya L. Agron Trop 17:345–351

    Google Scholar 

  • Horovitz S, Jiménez H (1967) Cruzamientos interespecíficos e intergenericos en caricaceas y sus implicaciones fitotechicas. Agron Trop 17:323–343

    Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068. doi:10.1139/G06-076

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS, Wang G-L, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanchana-Udomkan C, Ford R, Drew R (2014) Molecular markers in papayas. In: Ming R, Moore PH (eds) Genetics and genomics of papaya. Springer, New York, pp 355–375

    Chapter  Google Scholar 

  • Lemos EGM, Silva CLSP, Zaidan HA (2002) Identification of sex in Carica papaya L. using RAPD markers. Euphytica 127:179–184. doi:10.1023/A:1020269727772

    Article  CAS  Google Scholar 

  • Liu Z, Moore PH, Hao M, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. doi:10.1038/nature02228

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MMM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436. doi:10.1534/genetics.166.1.419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magdalita PM, Mercado CP (2003) Determining the sex of papaya for improved production. Food and Fertilizer Technology Center, Philippines, p 11

  • Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408. doi:10.1016/j.semcdb.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–997. doi:10.1038/nature06856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Na J-K, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Pérez RN, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genom 13:176–187. doi:10.1186/1471-2164-13-176

    Article  CAS  Google Scholar 

  • Oliveira EJ, Dantas JLL, Castellen MS, Lima DS, Barbosa HS, Motta TBN (2007) Marcadores moleculares na predição do sexo em plantas de mamoeiro. Pesqui Agropecu Bras 42:1747–1754. doi:10.1590/S0100-204X2007001200012

    Article  Google Scholar 

  • Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewiez Z, Crissman HA, Robinson JP (eds) Methods in cell biology, vol 33. Academic Press, San Diego, pp 105–110

    Google Scholar 

  • Parasnis AS, Ramakrishna W, Chowdari KV, Gupta VS, Ranjekar PK (1999) Microsatellite (GATA)n reveals sex-specific differences in Papaya. Theor Appl Genet 99:1047–1052. doi:10.1007/s001220051413

    Article  CAS  Google Scholar 

  • Parasnis AS, Gupta VS, Tamhankar SA, Ranjekar PK (2000) A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6:337–344. doi:10.1023/A:1009678807507

    Article  CAS  Google Scholar 

  • Pinto FO, Pereira MG, Luz LN, Cardozo DL, Ramos HCC, Macedo CMP (2013) Use of microsatellite markers in molecular analysis of segregating populations of papaya (Carica papaya L.) derived from backcrossing. Genet Mol Res 12:2248–2259. doi:10.4238/2013.July.8.6

    Article  CAS  PubMed  Google Scholar 

  • Reddy SR, Krishna RB, Reddy KJ (2012) Sex determination of papaya (Carica papaya) at seedling stage through RAPD markers. Res Biotechnol 3:21–28

    Google Scholar 

  • Rimberia FK, Sunagawa H, Urasaki N, Ishimine Y, Adaniya S (2005) Embryo induction via anther culture in papaya and sex analysis of the derived plantlets. Sci Hortic 103:199–208. doi:10.1016/j.scienta.2004.04.013

    Article  CAS  Google Scholar 

  • Santos SC, Ruggiero C, Silva CLSP, Lemos EGM (2003) A microsatellite library for Carica papaya L. cv Sunrise Solo. Rev Bras Frutic 25:263–267. doi:10.1590/S0100-29452003000200020

    Article  Google Scholar 

  • Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Genet 93:547–553. doi:10.1007/BF00417946

    Article  CAS  PubMed  Google Scholar 

  • Storey WB (1938) Segregation of sex types in Solo papaya and their application to the selection of seed. Proc Am Soc Hort Sci 35:83–85

    Google Scholar 

  • Storey WB (1953) Genetics of the papaya. J Hered 44:70–78

    Google Scholar 

  • Sudha R, Singh DR, Sankaran M, Singh S, Damodaran V, Simachalam P (2013) Genetic diversity analysis of papaya (Carica papaya L.) genotypes in Andaman Islands using morphological and molecular markers. Afr J Agr Res 8:5187–5192. doi:10.5897/AJAR2013.7571

    CAS  Google Scholar 

  • Tirichine L, Andrey P, Biot E, Maurin Y, Gaudin V (2009) 3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei. Plant Meth 5:11–17. doi:10.1186/1746-4811-5-11

    Article  Google Scholar 

  • Urasaki N, Tarora K, Uehara T, Chinen I, Terauchi R, Tokumoto M (2002a) Rapid and highly reliable sex diagnostic PCR assay for papaya (Carica papaya L.). Breed Sci 52:333–335. doi:10.1270/jsbbs.52.333

    Article  CAS  Google Scholar 

  • Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002b) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. doi:10.1007/s001220100693

    Article  CAS  PubMed  Google Scholar 

  • Wai CM, Ming R, Moore PH, Paull RE, Yu Q (2010) Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Trop Plant Biol 3:171–181. doi:10.1007/s12042-010-9054-1

    Article  Google Scholar 

  • Wai CM, Moore PH, Paull RE, Ming R, Yu Q (2012) An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome Res 20:753–767. doi:10.1007/s10577-012-9312-1

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Na J-K, Yu Q et al (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci 109:13710–13715. doi:10.1073/pnas.1207833109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Q, Hou S, Feltus FA, Jones MR, Murray JE, Veatch O, Lemke C, Saw JH, Moore RC, Thimmapuram J, Liu L, Moore PH, Alam M, Jiang J, Paterson AH, Ming R (2008) Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53:124–132. doi:10.1111/j.1365-313X.2007.03329.x

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo M-C, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genom 10:371–383. doi:10.1186/1471-2164-10-371

    Article  Google Scholar 

  • Zhang P, Friebe B (2009) FISH on plant chromosomes. In: Liehr T (ed) Fluorescence in situ hybridization (FISH): application guide. Springer, Berlin, pp 365–394

    Chapter  Google Scholar 

  • Zhang W, Wai CM, Ming R, Yu Q, Jiang J (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3:166–170. doi:10.1007/s12042-010-9053-2

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil) for financial support, and Calimam Agrícola S/A (ES, Brazil) and Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural (Incaper) for supplying the biological material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, I.S., Carvalho, C.R. & Soares, F.A.F. Early sex discrimination in Carica papaya by nuclei FISH. Euphytica 206, 667–676 (2015). https://doi.org/10.1007/s10681-015-1485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1485-1

Keywords

Navigation