Skip to main content
Log in

FGGE method: description and application in data from maize cultivars

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The objective of this study was to propose a methodology using a factor analysis associated with genotypic and genotype × environment interaction effects (FGGE) and to accomplish, simultaneously, analyses of environmental stratification and the adaptability of maize cultivars indicated for planting in Paraná State. The analysis of adaptability based on the factor analysis was accomplished graphically by scoring in relation to the factors with separation in the adaptability quadrants. The analysis of environmental stratification were accomplished beginning with the magnitude of the final factor loadings obtained after rotations through the varimax method. The FGGE method is efficient for processing the environmental stratification and adaptability analysis. More than 70 % of the retained variation in the first eigenvalues represents the expressive part of the sum of the genotypic and genotype × environment interaction (G × E) interaction effects for this data set. The cultivars with wide adaptation and high yield in the group of the tested environments were P30F35, P30F53, P30K64, P30R50 and AS 1570.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acquaa G, Adams MW, Kelly JD (1992) A factor analysis of plant variables associated with architecture and seed size in dry bean. Euphytica 60:171–177

    Google Scholar 

  • Crossa J, Cornelius PL (1997) Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Sci 37:405–415

    Google Scholar 

  • Crossa J, Gauch HG, Zobel RW (1990) Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci 30:493–500

    Article  Google Scholar 

  • Crossa J et al (1991) AMMI adjustment for statistical analysis of an international wheat yield trial. Theor Appl Genet 81:27–37

    Article  CAS  PubMed  Google Scholar 

  • Cruz CD, Carneiro PCS (2006) Modelos biométricos aplicados ao melhoramento genético, vol 2. UFV, Viçosa, p 585

    Google Scholar 

  • Duarte JB, Vencovsky R (1999) Interação genótipos x ambientes: uma introdução a análise “AMMI”. Sociedade Brasileira de Genética, Brasil

    Google Scholar 

  • Duarte JB, Zimmermann MJO (1995) Correlation among yield stability parameters in common bean. Crop Sci 35:905–912

    Article  Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Pandey S, Coors JG (eds) The genetics and exploitation of heterosis in crops. ASA, Madison, pp 19–29

    Google Scholar 

  • Ferreira DF (2008) Estatística multivariada Ed. UFLA, Lavras

    Google Scholar 

  • Fritsche-Neto R et al (2010) Factor analysis and SREG GGE biplot for the genotype × environment interaction stratification in maize. Ciência Rural 40:1043–1048

    Article  Google Scholar 

  • Garbuglio DD et al (2007) Análise de fatores e regressão bissegmentada em estudo de estratificação ambiental e adaptabilidade em milho. Pesquisa Agropecuária Brasileira 42:183–191

    Article  Google Scholar 

  • Gerage AC, Shioga PS, Araujo PM. (2006) Avaliação estadual de cultivares de milho safra 2005/2006, No. 150. IAPAR, Londrina

  • Gould SJ (1996) The mismeasure of man. W. W. Norton, New York

    Google Scholar 

  • Granate MJ et al (2001) A análise de fatores na predição de ganhos por seleção em milho (Zea mays L.). Acta Scientiarum 23:1271–1279

    Google Scholar 

  • Houmayoun H (2011) Study of some morphological traits of corn hybrids. American-Eurasian J Agric Environ Sci 10:810–813

    Google Scholar 

  • Juvik JA et al (1993) Kernel changes in a shrunken-2 maize population associated with selection for increased field emergence. J Am Soc Hortic Sci 118:135–140

    Google Scholar 

  • Kang MS, Gauch Júnior HG (1996) Genotype by environment interaction. CRC, New York

    Google Scholar 

  • Khavari Khorasani S et al (2011) Multivariate analysis of agronomic traits of new corn hybrids (Zea maiz L.). Int J AgriSci 1:314–322

    Google Scholar 

  • Lin CS (1982) Grouping genotypes by a cluster method directly related to genotype-environment interaction mean-square. Theor Appl Genet 62:277–280

    CAS  PubMed  Google Scholar 

  • Mendonça O et al (2007) Análise de fatores e estratificação ambiental na avaliação da adaptabilidade e estabilidade em soja. Pesquisa Agropecuária Brasileira 42:1567–1575

    Article  Google Scholar 

  • Munaro LB et al (2014) Brazilian spring wheat homogeneous adaptation regions can be dissected in major megaenvironments. Crop Sci 54:1–10

    Article  Google Scholar 

  • Murakami DM, Cruz CD (2004) Proposal of methodologies for environment stratification and analysis of genotype adaptability. Crop Breed Appl Biotechnol 4:7–11

    Article  Google Scholar 

  • Rakshit S et al (2012) GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica 185:465–479

    Article  Google Scholar 

  • Ramos LM, Sanches A, Cotes JM (2009) Testes multiambientais na seleção de genótipos de arroz utilizando o modelo de regressão nos sítios ou locais. Ciência Rural 39:52–57

    Article  Google Scholar 

  • Robertson A (1959) Experimental design on the measurement of heritabilities and genetic correlations: biometrical genetics. Pergamon Press, New York

  • Rocha MM (2002) Seleção de linhagens experimentais de soja para adaptabilidade e estabilidade fenotípica. Thesis, Universidade de São Paulo/Escola Superior de Agricultura Luiz de Queiroz

  • Rocha MM, Vello NA (1999) Interação genótipos e locais para rendimento de grãos de linhagens de soja com diferentes ciclos de maturação. Bragantia 58:69–81

    Article  Google Scholar 

  • Rolins JA et al (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126:2803–2824

    Article  Google Scholar 

  • Rossi RR, Benin G (2012) Biplot analysis: concepts, interpretations and uses. Ciência Rural 42:1404–1412

    Article  Google Scholar 

  • Shioga PS, Gerage AC, Araujo PM (2007) Avaliação estadual de cultivares de milho safra 2006/2007, No. 152. IAPAR, Londrina

  • Soto-Cerda BJ et al (2014) Assessing the agronomic potential of linseed genotypes by multivariate analyses and association mapping of agronomic traits. Euphytica 196:35–49

    Article  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:529–543

    Google Scholar 

  • Troyer AF, Wellin EJ (2009) Heterosis decreasing in hybrids: yield test inbreds. Crop Sci 49:1969–1976

    Article  Google Scholar 

  • Von Korf M (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669

    Article  Google Scholar 

  • Wan Y, Qian Y, Migliaccio KW, Li Y, Conrad C (2014) Linking spatial variations in water quality with water and land management using multivariate techniques. J Environ Qual 43:599–610

    Article  PubMed  Google Scholar 

  • Yan W et al (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deoclécio Domingos Garbuglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbuglio, D.D., Ferreira, D.F. FGGE method: description and application in data from maize cultivars. Euphytica 204, 723–737 (2015). https://doi.org/10.1007/s10681-015-1375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1375-6

Keywords

Navigation